510
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL REPORT

Best Estimate BWR Transient Analysis with TRACG Assessment using Data from BWR Startup Tests and LOCA Integral Tests

&
Pages 607-620 | Received 04 Mar 1997, Published online: 15 Mar 2012
 

Abstract

TRACG is a new version of the best estimate BWR transient analysis code, which utilizes a multi-dimensional two-fluid model for the thermal hydraulics and a three-dimensional neutron kinetics model. A three-dimensional neutronics, a fully implicit integration scheme and models for advanced BWR components have been implemented in the code upon TRAC-BF1.

Assessment of TRACG has been performed in this study for the predictive capability of plant transients, which include thermal-hydraulic and neutronic interactions, as affected by responses of the plant control system. Simulations were presented for BWR representative transient tests, which were done as part of a series of BWR5 startup tests. As for the capability to predict thermal hydraulics during the design basis LOCAs, simulations were presented for the LOCA integral tests conducted in the ROSA-III at JAERI and the Hitachi TBL, which had been used for assessment of the TRAC former version.

Consequently, (1)the space-dependent power flow transitions in a BWR were confirmed by TRACG simulations in which the module coupled with neutronics and thermal hydraulics during transients has been newly introduced, and (2) the characteristic thermal-hydraulic phenomena including multi-channel effects during the design basis LOCAs were confirmed, as well as the TRAC former version, by TRACG simulations on which the influence due to a fully implicit integration scheme has not extended. Capability of TRACG to predict BWR transients ranging from simple plant operational transients to design basis LOCAs was successfully demonstrated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.