295
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Development of Parallel Coupling System between Three-Dimensional Nodal Kinetic Code ENTREE and Two-Fluid Plant Simulator TRAC/BF1

, &
Pages 840-854 | Received 24 Mar 2000, Published online: 07 Feb 2012
 

Abstract

The high-speed three-dimensional neutron kinetic code ENTRÉE was developed based on the polynomial and semi-analytical nonlinear iterative nodal methods (PNLM and SANLM) with also introducing the discontinuity factor. In order to enhance the efficiency of transient calculation, the nonlinear correction-coupling coefficients are intermittently updated based on the changing rate of core state variables. By giving the analytical form for two-node problem matrix elements, the additional computing time in SANLM was minimized. A fast algorithm was developed for the multi table macro-cross section rebuilding process. The reactivity component model was implemented based on the variation of the neutron production and destruction terms. The code was coupled with the two-fluid thermal hydraulic plant simulator TRAC/BF1 through PVM or MPI protocols. Two codes are executed in parallel with exchanging the feedback parameters explicitly. Based on the LMW PWR transient benchmark, it was shown that both PNLM and SANLM spend less than 20% excess computing time in comparison with the coarse mesh finite difference method (CFDM). The implementation of the discontinuity factor was verified based on the DVP problem. Adequacy and parallel efficiency of the coupling system TRAC/BF1-ENTREE was demonstrated based on the BWR cold water injection transient proposed by NEA/CRP.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.