256
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Analysis of Carbon Isotope Separation by Plasma Chemical Reactions in Carbon Monoxide Glow Discharge

, &
Pages 637-646 | Received 02 Nov 2001, Accepted 09 Apr 2002, Published online: 07 Feb 2012
 

Abstract

The separation of carbon isotopes in CO glow discharge has been studied, in which the formation of stable products enriched in 13C is analyzed by the numerical simulation of kinetic model. Vibrational kinetics and vibrationally induced chemical reaction of CO molecules are considered in the kinetic model as well as electron impact reactions and isotope scrambling reactions of isotopically enriched products. The reaction yield and final isotope enrichment of the stable products are derived as a function of mean electron energy. When mean electron energy is 2.1 eV in the case of Maxwellian electron energy distribution and 3.3 eV in the case of Druyvesteyn one, the kinetic model can reproduce experimental isotope enrichment of precipitated carbon atoms in discharge reactor. The calculation suggests optimum mean electron energy of the plasma for isotope separation as 1.0 eV and, in this case, it is expected that 13C enrichment coefficient for precipitated carbon atoms is about 10 and its reaction yield is about 0.5%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.