765
Views
22
CrossRef citations to date
0
Altmetric
ORIGINAL PAPER

Numerical Approach to the Safety Evaluation of Sodium—Water Reaction

&
Pages 708-718 | Received 07 Mar 2003, Accepted 01 Jul 2003, Published online: 07 Feb 2012
 

Abstract

A numerical simulation method of multi-dimensional and multi-phase reacting flow (SERAPHIM code) has been developed to evaluate the sodium-water reaction (SWR) phenomena in a steam generator of liquid metal fast reactor (LMFR). A compressible multi-fluid and one-pressure model is adopted and pressure and velocity fields are updated simultaneously by the HSMAC method. Two types of reaction models are considered; one is a surface reaction and the other is a gas-phase reaction. The surface reaction model assumes that water vapor reacts with the liquid sodium at the gas-liquid interface. If chemical reaction heating is large enough, liquid sodium is vaporized resulting in a gas-phase reaction. In the surface reaction, the reaction rate is assumed to be infinitely large. Several overall reaction equations are taken into account in the gas-phase reaction and the reaction rates are described in the form of the Arrhenius law. In the present study, adequacy of the analytical procedures for compressible multi-phase flow is validated by a benchmark calculation of the Edwards pipe blowdown problem. As a numerical example, two- and three-dimension analyses of the single-tube geometry and the two-dimension analyses of the 43-tubes geometry are carried out. It is concluded that the numerical quantification of the SWR accident by the SERAPHIM code is practicable and further use of the SERAPHIM code is useful to resolve safety issues immanent in the SWR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.