352
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL PAPER

Critical Heat Flux Prediction Method Based on Two-Phase Turbulence Model

&
Pages 725-733 | Received 07 Mar 2003, Accepted 28 Jul 2003, Published online: 07 Feb 2012
 

Abstract

In this paper, we present an analytical methodology to predict forced convective CHF (Critical Heat Flux) for DNB (Departure from Nucleate Boiling) type boiling transition that occurs inside of uniformly heated round tubes. Axial directional two-phase flow analysis was conducted based on one-dimensional two-fluid model and typical constitutive models. At the same time, the radial directional distribution of void fraction at any axial location was calculated based on the bubble diffusion model, which was coupled with two-phase turbulence model for boiling bubbly flow. The calculated void fraction showed the wall peak distribution, and was compared with experimental data, which was derived from subcool boiling experiments. IPNVG (Incipient Point of Net Vapor Generation), which means the starting point of two-phase flow analysis, was also investigated well, since it was revealed that IPNVG had a significant influence on CHF prediction. By using this methodology for calculating radial directional void fraction distribution, we carried out CHF prediction for water on the assumption that DNB would occur when the local void fraction near the heated wall exceeds a critical value. The predicted CHF agreed well with experimental data, and the accuracy was within about 20%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.