254
Views
10
CrossRef citations to date
0
Altmetric
ORIGINAL PAPER

The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water

, &
Pages 809-815 | Received 02 May 2005, Accepted 23 Jun 2005, Published online: 15 Feb 2012
 

Abstract

For enhancing the effectiveness of hydrogen water chemistry (HWC) in boiling water reactors (BWRs) in the aspects of lower hydrogen consumption and of a more effective reduction in electrochemical corrosion potential (ECP), the technique of inhibitive protective coating on structural materials was brought into consideration. The application of inhibitive treatment is aimed at deterring the reduction reactions of oxidizing species occurring on metal surfaces and the oxidation reaction of metals. In the current study, electrochemical polarization analyses at 288°C were conducted to characterize the electrochemical properties of ZrO2 treated and untreated 304 stainless steel specimens in pure water with dissolved oxygen or hydrogen. The polarization results showed that the treated specimens exhibited lower corrosion potentials, corrosion current densities, exchange current densities, and cathodic current densities than the untreated one in high temperature pure water with dissolved oxygen. For the environment with dissolved hydrogen only, reductions in anodic current density and exchange current density were observed, indicating that the ZrO2 treatment also deterred the oxidation reaction of hydrogen. However, in comparison with the data obtained, the ZrO2 treatment seemed to be relatively more effective in inhibiting the oxygen reduction reaction than inhibiting the hydrogen oxidation reaction. One additional beneficial outcome was that the anodic current density of the metal was also decreased, leading to a much lower overall corrosion current density of the ZrO2 treated specimen.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.