175
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL PAPER

The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water

, &
Pages 462-469 | Received 20 Oct 2004, Accepted 03 Mar 2005, Published online: 15 Feb 2012
 

Abstract

In order to assess the influence of dissolved hydrogen on the intergranular stress corrosion cracking (IGSCC) characteristics of Type 304 stainless steels treated with inhibitive chemicals, electrochemical corrosion potential (ECP) measurements and slow strain rate tensile (SSRT) tests were conducted in high temperature pure water. A number of thermally sensitized specimens were prepared and then pre-oxidized in a 288°C pure water environment with the presence of 300ppb dissolved oxygen for 360h. Most of the specimens were then separately treated with various inhibitive chemicals including powdered zirconium oxide (ZrO2), powdered titanium oxide (TiO2), and zirconyl nitrate [ZrO(NO3)2] via hydrothermal deposition at 150°C. Test environments with a dissolved oxygen concentration of 300ppb and various dissolved hydrogen concentrations at 288°C were created. Test results showed that the ECPs of the treated specimens were lower than that of the untreated one no matter what the dissolved hydrogen concentration was. In addition, IGSCC was observed on all specimens (treated or untreated) in all tested environments. However, the untreated specimen exhibited lower elongation, shorter failure time, and more secondary cracks on the lateral surfaces. It was therefore suggested that inhibitive chemicals such as ZrO2, TiO2, and ZrO(NO2)2 did provide a certain degree of enhancement in improving the mechanical behavior of the treated specimens and in prolonging IGSCC initiation times.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.