840
Views
17
CrossRef citations to date
0
Altmetric
ORIGINAL PAPER

Evaluation of Containment Failure Probability by Ex-Vessel Steam Explosion in Japanese LWR Plants

, , , &
Pages 774-784 | Received 11 Jan 2006, Accepted 03 Apr 2006, Published online: 05 Jan 2012
 

Abstract

The containment failure probability due to ex-vessel steam explosions was evaluated for Japanese BWR and PWR model plants. A stratified Monte Carlo technique (Latin Hypercube Sampling (LHS)) was applied for the evaluation of steam explosion loads, in which a steam explosion simulation code JASMINE was used as a physics model. The evaluation was made for three scenarios: a steam explosion in the pedestal area or in the suppression pool of a BWR model plant with a Mark-II containment, and in the reactor cavity of a PWR model plant. The scenario connecting the generation of steam explosion loads and the containment failure was assumed to be displacement of the reactor vessel and pipings, and failure at the penetration in the containment boundary. We evaluated the conditional containment failure probability (CCFP) based on the preconditions of failure of molten core retention within the reactor vessel, relocation of the core melt into the water pool without significant interference, and a strong triggering at the time of maximum premixed mass. The obtained mean and median values of the CCPF were 6.4x 10−2 (mean) and 3.9x 10−2 (median) for the BWR suppression pool case, 2.2x10−3 (mean) and 2.8x10−10 (median) for the BWR pedestal case, and 6.8X10−2 (mean) and 1.4x10−2 (median) for the PWR cavity case. The evaluation of CCFPs on the basis of core damage needs consideration of probabilities for the above-mentioned preconditions. Thus, the CCFPs per core damage should be lower than the values given above. The specific values of the probability were most dependent on the assumed range of melt flow rate and fragility curve that involved conservatism and uncertainty due to simplified scenarios and limited information.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.