286
Views
2
CrossRef citations to date
0
Altmetric
ARTICLE

Three-Dimensional Numerical Calculations on Liquid-Metal Magneto-hydrodynamic Flow through Circular Pipe in Magnetic-Field Inlet-Region

, &
Pages 714-722 | Received 14 Jun 2006, Accepted 31 Jan 2007, Published online: 05 Jan 2012
 

Abstract

Three-dimensional numerical calculations have been performed on liquid-metal magnetohydrodynamic (MHD) flows through a circular pipe in the inlet region of the applied magnetic field, including a sufficient calculation region upstream in the magnetic field section. The continuity equation, the momentum equation including the Lorentz force term, and the induction equation derived from basic equations in the electromagnetism have been solved numerically. Along the flow axis (i.e., the channel axis), the pressure decreases slightly as a normal non-MHD flow, increases once, thereafter, decreases sharply, and finally decreases as a fully-developed MHD flow. The sharp decrease in the pressure, resulting in a large pressure drop in the inlet region is due to the increase in the induced electric current in this region compared with that in the fully-developed region. The velocity distribution changes from a parabolic profile of a laminar non-MHD flow to a profile with peaks near the walls parallel to the magnetic field, and finally to a flat profile of a fully-developed MHD flow.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.