715
Views
14
CrossRef citations to date
0
Altmetric
ARTICLE

Evaluation Methods for Corrosion Damage of Components in Cooling Systems of Nuclear Power Plants by Coupling Analysis of Corrosion and Flow Dynamics (II): Evaluation of Corrosive Conditions in PWR Secondary Cooling System

, , , , , & show all
Pages 1275-1286 | Received 20 Feb 2008, Accepted 16 Aug 2008, Published online: 05 Jan 2012
 

Abstract

Flow accelerated corrosion (FAC) is divided into two processes: a corrosion (chemical)process and a flow dynamics (physical) process. The former is the essential process to cause FAC and the latter is the accelerating process to enhance FAC occurrence. The chemical process in the surface boundary layer can be analyzed to evaluate FAC rate. In this paper, corrosive conditions along the flow path of the PWR secondary cooling system were evaluated. To do this, flow velocity and temperature in each elemental volume along the flow path were obtained with 1D computational flow dynamics (CFD) codes, distribution of oxygen concentration along the flow path was calculated with a oxygen hydrazine reaction code, and then electrochemical corrosion potential (ECP) was evaluated by using the Evans diagram. In the proposed calculation procedures for corrosive conditions, the oxygen hydrazine reactions were divided into bulk and surface reactions and the oxidation reaction of hydrazine on the surface was considered to obtain ECP under hydrazine coexisting conditions. Calculations of precise flow patterns and mass transfer coefficients at the structure surface made with 3D CFD codes and calculations of wall thinning rates made with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis agreed with the calculations of corrosive conditions to evaluate FAC rate.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.