129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat load estimation of conveyed ore in underground mines

&
 

ABSTRACT

Research has shown that broken rock on conveyor transport systems can contribute upwards of 50% toward the overall heat load in underground mines. However, few studies have made significant efforts to predict the temperature distribution of the ore and air simultaneously, which can help implement heat management strategies. The present investigation explores a transient, analytical heat transfer model to track ore-pile temperature distributions along conveyor systems in an example underground mine. Production rate, ambient conditions, ore pile thickness, and belt velocity are adjusted to evaluate the effect on dry and wet bulb temperatures. Model results indicated a total ore pile heat flow in the range of 4.2–5.2 MW, where higher heat transfer rates reflect winter ambient conditions and maximum production rates.

RÉSUMÉ

La recherche a montré que les roches brisées sur les systèmes de transport par convoyeur peuvent contribuer jusqu’à 50 % à la charge thermique globale dans les mines souterraines. Toutefois, peu d’études ont fait des efforts importants pour prédire la distribution de la température du minerai et de l’air simultanément, ce qui peut aider à mettre en œuvre des stratégies de gestion de la chaleur. La présente étude explore un modèle de transfert de chaleur analytique transitoire pour suivre la répartition de la température entre les amas de minerai le long des systèmes de convoyage d’une mine souterraine. Le taux de production, les conditions ambiantes, l’épaisseur de la pile de minerai et la vitesse de la courroie sont ajustés pour évaluer l’effet sur les températures sèches et humides du thermomètre. Les résultats du modèle indiquaient un débit de chaleur total en tas de minerai de l’ordre de 4,2–5,2 MW, où les taux de transfert de chaleur plus élevés reflétaient les conditions ambiantes hivernales et les taux de production maximaux.

Additional information

Notes on contributors

K. Tom

K. Tom is a senior mechanical engineer at Howden Ventsim. Kevin’s expertise includes over 10 years of experience in modeling and simulating fluid and thermal systems in the mining and HVAC industries. Kevin graduated with a bachelor’s degree in Mechanical Engineering from McGill University (2007), and subsequently obtained his Master’s degree in Mechanical and Industrial Engineering from Concordia University (2010). [email protected]

J. Li

J. Li is the chief scientist and leads the science development team since March 2006 at Howden Ventsim. Her past work includes 10 years experience in HVAC design and 4 years’ experience in wastewater treatment system design in China. Jane graduated with a bachelor’s degree in Mechanical Engineering (1990) and a Master’s degree in Applied Mathematics (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.