88
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the effects of diesel oxidation catalysts on NO2 emissions from diesel-powered mining vehicles

&
 

ABSTRACT

Diesel-powered vehicles, particularly those equipped with oxidation catalysts (diesel oxidation catalysts, DOCs) are one of the major contributors to concentrations of toxic NO2 in underground mines. Potentially, the adverse effects of catalysts on NO2 emissions could result in higher exposures to NO2. In this study, 16 in-service DOCs supplied by various mining operations and five new DOCs with advanced catalyst formation supplied by manufacturers were tested. The testing took place at the CanmetMINING Diesel Research Laboratory in Ottawa; and was executed following two types of protocols: progressive load test (PLT) and vehicle transient test (VTT). The VTT consisted of four cycles that simulated operation of a load-haul-dump (LHD) vehicle, pickup truck, utility vehicle, and tractor. The DOCs were tested in a controlled laboratory environment using a single engine coupled to a dynamometer. The laboratory gas analyzers were used to characterize gaseous emissions including carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), oxides of nitrogen (NO x ), and total hydrocarbons (THCs). DOCs with three different types of catalyst formulations were evaluated during this study: (1) platinum group (group 1); (2) base metal/palladium (group 2) group; and (3) “advanced” group (group 3). All DOCs were found to reduce carbon monoxide (CO) and total hydrocarbon emissions. However, the change in NO2 (g/kWh) emissions over the VTT ranged from an increase of 446% to a reduction of 47%. In general, the increase in NO2 emission was much higher than the reduction for the in-use groups 1 and 2 DOCs; where the advanced group 3 DOCs saw an average reduction of NO2 (g/kWh) emissions by 73% (range from 47% to 94%). Therefore, advanced formulation DOCs designed for NO2 suppression are recommended for use in underground mines. The PLT provided emission conversion efficiencies for tested DOCs over the wide engine operating temperature range which can be used to estimate the effects of DOC emissions of a particular vehicle when operated over actual mine duty cycles. This paper discusses the study approach and test results of changes in NO2-specific emissions from DOCs.

RÉSUMÉ

Les véhicules à moteur diesel, en particulier ceux équipés de catalyseurs d’oxydation (catalyseurs d’oxydation diesel, COD) sont l’un des principaux contributeurs aux concentrations de NO2 toxique dans les mines souterraines. Potentiellement, les effets néfastes des catalyseurs sur les émissions de NO2 pourraient entraîner des expositions plus élevées au NO2. Dans cette étude, 16 COD en service fournis par diverses exploitations minières et cinq nouveaux COD avec formation avancée de catalyseur fournis par les fabricants ont été testés. Les essais ont eu lieu au laboratoire de recherche sur le diesel de CanmetMINES, à Ottawa, et ont été exécutés selon deux types de protocoles : l’essai de charge progressive (ECP) et l’essai transitoire de véhicule (ETV). L’ETV consistait en quatre cycles simulant le fonctionnement d’un véhicule de chargement-déchargement (VCD), d’une camionnette, d’un véhicule utilitaire et d’un tracteur. Les COD ont été testés dans un environnement de laboratoire contrôlé à l’aide d’un seul moteur couplé à un dynamomètre. Les analyseurs de gaz de laboratoire ont été utilisés pour caractériser les émissions gazeuses, y compris le monoxyde de carbone (CO), le dioxyde de carbone (CO2), l’oxyde nitrique (NO), les oxydes d’azote (NOx) et les hydrocarbures totaux (HT). Trois types de catalyseurs ont été évalués dans le cadre de cette étude : (1) le groupe platine (groupe 1) ; (2) le groupe métaux communs/palladium (groupe 2) ; et (3) le groupe avancé (groupe 3). Tous les COD ont permis de réduire les émissions de monoxyde de carbone (CO) et d’hydrocarbures totaux. Toutefois, la variation des émissions de NO2 (g/kWh) par rapport au ETV variait d’une augmentation de 446 % à une réduction de 47 %. En général, l’augmentation des émissions de NO2 était beaucoup plus élevée que la réduction des émissions des groupes en usage 1 et 2 ; dans le groupe avancé 3, les émissions de NO2 (g/kWh) ont diminué en moyenne de 73 % (fourchette de 47 % à 94 %). Par conséquent, il est recommandé d’utiliser des COD de formulation avancée conçus pour la suppression du NO2 dans les mines souterraines. L’ECP a permis d’obtenir des rendements de conversion des émissions pour les COD testés sur une large plage de température de fonctionnement du moteur qui peuvent être utilisés pour estimer les effets des émissions de COD d’un véhicule particulier lorsqu’il est utilisé au cours de cycles réels de service minier. Ce document traite de l’approche de l’étude et des résultats des essais des changements dans les émissions spécifiques au NO2 provenant des documents.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the following persons and companies:

  • Alain Landry and Glencore-Sudbury, for encouragement and supply of catalysts for the project.

  • Greg Mascioli, Superintendent Mobile Maintenance, and Glencore-Timmins, for supply of catalysts for this project.

  • Vale-Sudbury Mines, for supply of catalysts for the project.

  • Airflow Catalyst Systems, Catalytic Exhaust Products, CDTi (formerly ECS), DCL International, and Nett Technologies for supplying the advanced catalysts for this study.

  • CAMIRO (Canadian Mining Industry Research Organization) for consortium financial support for this project.

  • Mahe Gangal, David Young, Brent Rubeli, Eric Leung, and Vince Feres, CanmetMINING, original service providers of this work.

An earlier draft of this article was published in the Proceedings of the 17th North American Mine Ventilation Symposium (NAMVS 2019) prior to undergoing the CIM Journal peer-review process.

Additional information

Notes on contributors

J. Stachulak

J. Stachulak has extensive experience in the mining industry in various capacities including those as Manager for Strategic Ventilation for Vale-Base Metal Global Operation, Operating Mine Foreman. He has published extensively in the area of ventilation design/practices. He has been a principal investigator of a number of successful projects with international scope. Stachulak is an adjunct professor at McGill University and is currently leading the diesel emission research with MIRARCO Mining Innovation. [email protected]

C. Allen

C. Allen has held various mining engineering positions in Canada and the USA over the past 30+ years and currently holds the role of Manager Ventilation Design & Tech Support for Vale North Atlantic Operations. She has published in areas of technology, design, health & safety, and numerous speaking events; as well as involvement on research, boards, standards, and legislative committees.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.