3,186
Views
63
CrossRef citations to date
0
Altmetric
Extra Views

Engineering enhanced protein disaggregases for neurodegenerative disease

&
Pages 90-109 | Received 21 Jan 2015, Accepted 12 Feb 2015, Published online: 21 May 2015
 

Abstract

Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.

Acknowledgments

We thank Korrie Mack and Mariana Torrente for feedback on the manuscript.

Funding

Our studies were supported by: an American Heart Association Post-Doctoral Fellowship and Target ALS Springboard Fellowship (MEJ); NIH Director's New Innovator Award DP2OD002177, NIH grants R21NS067354, R21HD074510, and R01GM099836, a Muscular Dystrophy Association Research Award (MDA277268), Packard Center for ALS Research at Johns Hopkins University, Target ALS, and an Ellison Medical Foundation New Scholar in Aging Award (JS).