652
Views
1
CrossRef citations to date
0
Altmetric
Extra View

Microbial specialization by prions

ORCID Icon & ORCID Icon
Pages 157-161 | Received 09 Mar 2018, Accepted 24 Apr 2018, Published online: 24 Jul 2018
 

ABSTRACT

Microbial prions facilitate a variety of phenotypic switches. Recently-developed tools that can directly interrogate, in the living cell, the aggregation state of a protein have enabled a wider range of experiments for prion-mediated behaviors. With such tools, the roles of the yeast prion [SWI+] in migration and mating were studied. Although [SWI+] cells were consistently less fit than their [swi] counterparts under traditional laboratory conditions, in these new phenotypic paradigms [SWI+] cells demonstrated a distinct advantage. [SWI+] cells dispersed over a larger area under conditions resembling rainfall and outcrossed more frequently. We postulate that many behaviors in microorganisms may be modulated by stochastic prion switching. In diverse and changing natural environments, prion switching at low frequency may promote greater fitness of the population by specializing a small number of individuals with altered responses to their environments.

This article refers to:

Acknowledgments

We would like to thank Ahmad Khalil for insightful discussions and comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.