487
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Arsenic in rice and rice products in Northwestern Mexico and health risk assessment

ORCID Icon, , ORCID Icon &
Pages 25-33 | Received 09 May 2019, Accepted 04 Oct 2019, Published online: 05 Nov 2019
 
Help: about the FAC B Database

The Food Additives and Contaminants - Surveillance Database is a searchable database containing all the surveillance data published in Food Additives and Contaminants Part B (FAC B) since its launch in June 2008. Search results may be viewed on screen, or downloaded into standard reports or spreadsheets by simply clicking a button. You may search the entire database by following the link Visit FAC B Database, or alternatively you may choose to move from a FAC B article through to the specific dataset that corresponds to the article you are viewing. There are links to the relevant datasets from all FAC B articles. All subscribers to the FAC B journal will be granted access to the entire database. Pay-per-view customers will be granted access to the datasets corresponding to the articles that they have purchased, but they will not be able to search the full database. Please follow the link if you wish to visit the database now.

ABSTRACT

The aim of this study was to evaluate the health risk of arsenic exposure by consumption of rice and its products marketed in northwestern Mexico. Sixty-six national and imported rice products were purchased in markets in northwestern Mexico, an endemic arsenic region. Total and inorganic arsenic in rice samples were analysed by inductively coupled plasma atomic emission spectroscopy and the risk assessment was evaluated according to the hazard quotient (HQ) and carcinogenic risk (CR). Total and inorganic arsenic in rice samples ranged from 0.06 to 0.29 mg/kg and from 0.03 to 0.13 mg/kg, respectively, and 40% of the analysed samples exceeded FAO/WHO arsenic recommended levels. The inorganic/total arsenic ratio ranged from 15% to 65%. The HQ and CR values for total and inorganic arsenic did not exceed safety levels. Therefore, rice supply in the northwestern of Mexico appears to be safe for human consumption.

Acknowledgments

Special thanks to Dr. Paul W. Kilpatrick for his support with the English edition.

Disclosure statement

There are no conflicts of interest to declare.

Additional information

Funding

This work was supported by funds provided by National Council of Science and Technology (CONACYT), through the Grants: [INFR-2016-1-269884]. This publication was financed with ITSON-PROFAPI- 2019-0037 resources.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.