354
Views
12
CrossRef citations to date
0
Altmetric
Articles

Conjugate conduction convection and radiation heat transfer through hollow autoclaved aerated concrete blocks

, , &
Pages 248-262 | Received 23 Oct 2010, Accepted 21 Feb 2011, Published online: 31 May 2011
 

Abstract

A computational fluid dynamics (CFD) model is developed to study thermal performance of hollow autoclaved aerated concrete (AAC) blocks in wall constructions of buildings under hot summer conditions. The goal is to determine size and distribution of cavities (within building blocks) that reduce heat flow through the walls and thereby lead to energy savings in air conditioning. The model couples conjugate, laminar natural convective flow of a viscous fluid (air) in the cavities with long-wave radiation between the cavity sides. Realistic boundary conditions were employed at the outdoor and indoor surfaces of the block. A state-of-the-art building energy simulation programme was used to determine the outdoor thermal environment that included solar radiation, equivalent temperature of the surroundings, and convective heat transfer coefficient. The CFD problem is put into dimensionless formulation and solved numerically by means of the control-volume approach. The study yielded comprehensive, detailed quantitative estimates of temperature, stream function and heat flux throughout the AAC block domain. The results show a complex dependence of heat flux through the blocks on cavity and block sizes. In general, introducing large cavities in AAC blocks, being a construction material of low thermal conductivity, leads to greater heat transfer than the corresponding solid blocks. Several small cavities in a block may lead to small reductions in heat flux, but the best configuration found is a large cavity with a fine divider mesh in which case heat flux reductions of 50% are achievable.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.