309
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Proper generalized decomposition for solving coupled heat and moisture transfer

, , &
Pages 295-311 | Received 19 Feb 2014, Accepted 03 Jun 2014, Published online: 15 Aug 2014
 

Abstract

This paper proposes a reduced order model to simulate heat and moisture behaviour of material based on proper general decomposition (PGD). This innovative method is an a priori model reduction method. It proposes an alternative way for computing solutions of the problem by considering a separated representation of the solution. PGD offers an interesting reduction of numerical cost. In this paper, the PGD solution is first compared with a finite element solution and the commercial validated model Delphin in an 1D case. The results show that the PGD resolution techniques enable the field of interest to be represented with accuracy, with a relative error rate of less than 0.1%. The study remains in the hygroscopic range of the material. As the numerical gain of the method becomes interesting when the space dimension increases, this resolution strategy was then used on a 2D multi-layered test case. The dynamics and amplitude of hygrothermal fields are perfectly represented by the PGD solution. Temperature and vapour pressure modelled with PGD can be used for post-processing and analysing the behaviour of an assembly.

Funding

The authors acknowledge the French National Research Agency (ANR) for funding this work through its Sustainable Buildings and Cities program (Humibatex project no. ANR-11-BVD).

Nomenclature

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.