482
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Use of a Monte Carlo analysis within a physiologically based pharmacokinetic model to predict doxycycline residue withdrawal time in edible tissues in swine

, , , , &
Pages 73-84 | Received 12 Jun 2011, Accepted 13 Sep 2011, Published online: 07 Nov 2011
 

Abstract

The pharmacokinetics of doxycycline were studied following a single intravenous (I.V.) and intramuscular (I.M.) injection of 10 mg/kg into eight healthy pigs. The steady-state tissue/plasma partition coefficients were obtained via a 3-h constant rate infusion (CRI) in four pigs. Based on the results of in vivo studies and the parameters derived from published work, a physiologically based pharmacokinetic (PBPK) model was developed to predict the drug concentration in edible tissues. The predicted values were then compared with those derived from a previous study. To account for individual differences in the processes of drug metabolism and/or diffusion, a Monte Carlo (MC) run of 1000 simulations was incorporated into the PBPK model to predict the doxycycline residue withdrawal times in edible tissues in swine. The withdrawal periods were compared with those derived from linear regression analysis. The PBPK model presented here provided accurate predictions of the observed concentrations in all tissues except for the injection site. The withdrawal times in all edible tissues derived from the MC analysis were longer than those from linear regression analysis. Based on the residues in the injection site and muscle tissue, the MC analysis predicted a withdrawal time of 33 days. Here, we illustrate that MC analysis can be incorporated into the PBPK model to accurately predict doxycycline residue withdrawal time in edible tissues in swine.

Acknowledgements

This study was supported in part by National Key Technology R&D Program for the 11th five-year plan (2006BAD31B06).

Notes

These authors contributed equally to this study.

Additional information

Notes on contributors

H.W. Liu

These authors contributed equally to this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.