377
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Monitoring of Dinophysis species and diarrhetic shellfish toxins in Flødevigen Bay, Norway: inter-annual variability over a 25-year time-series

, &
Pages 1605-1615 | Received 10 Jun 2010, Accepted 16 Jul 2012, Published online: 14 Aug 2012
 

Abstract

The accumulation of phycotoxins in bivalve mussels associated with mussels feeding on toxic phytoplankton is a well-known phenomenon in Norway. Regular monitoring for 25 years has revealed that accumulation of Diarrhetic Shellfish poisoning (DSP) toxins in mussels is the main phycotoxin problem along the Norwegian coast. The aim of this study was to evaluate possible trends over time of Dinophysis spp. and DSP as well as possible correlation between abundance of Dinophysis spp. and toxin accumulation in mussels, as based on intensive and regular monitoring at the southern coast of Norway at Flødevigen Bay. The main source organism causing a risk of DSP in Norway is Dinophysis acuta. However, it cannot be excluded that other Dinophysis spp., e.g. D. acuminata and D. norvegica, may contribute to the total accumulation of toxins. The variability in the occurrence of these species is high at both short- and long-term; between days and between years. There are, however, some important overall patterns in the occurrence of the species during the last decades. Dinophysis acuminata and D. norvegica have mainly been abundant from March to December, whereas D. acuta has typically occurred in late summer and autumn (August–December). For all three species we have observed a narrowing of the peak season since 2002 at the same time as they have become less abundant. Coincident with these changes, the problem of the accumulation of DSP toxins in mussels along the southern coast of Norway has declined significantly, but it is still mainly restricted to the autumn. Why the cell concentration of Dinophysis spp. has declined after 2002 is not obvious, but this has occurred in a period with relatively high summer temperatures. The relatively simultaneous changes in physical, chemical and biological factors of the pelagic ecosystem along the southern coast of Norway indicate that complicated ecological interactions may be involved.

Acknowledgements

The Norwegian Food Safety Authority is funding the monitoring of toxic algae and the toxicity of mussels along the Norwegian coast. The Norwegian School of Veterinary Science gave the authors access to the toxin data. The authors would also like to thank Anouk Blauw, Deltares, for comments and discussions. The authors thank the anonymous reviewers for their comments. The project had shared funding between The Institute of Marine Research, Norwegian Research Council (196048) and the Nordic Innovation Center (Program SAFEFOODERA).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.