301
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Modelling thermal degradation of zearalenone in maize bread during baking

, , , &
Pages 528-533 | Received 10 Apr 2012, Accepted 14 Nov 2012, Published online: 21 Dec 2012
 

Abstract

The thermal degradation of zearalenone (ZEA) was investigated using a crust-like model, representing maize bread, which was prepared with naturally contaminated maize flour. Model samples were heated under isothermal conditions at the temperature range of 100–250°C. No reduction was observed at 100°C. Thermal degradation rate constants (k) were calculated as 0.0017, 0.0143 and 0.0216 min−1 for 150, 200 and 250°C, respectively. Maize bread baked at 250°C for 70 min was used to test the capability of model kinetic data for the prediction of ZEA reduction. The time–temperature history in the crust and crumb parts was recorded separately. Partial degradation of ZEA at each time interval was calculated by means of the corresponding k-values obtained by using the Arrhenius equation, and the total reduction occurring at the end of the entire baking process was predicted. The reduction in the crumb and crust of bread was also experimentally determined and found to be consistent with the predicted values. It was concluded that the kinetic constants determined by means of the crust-like model could be used to predict the ZEA reduction occurring during baking of maize bread.

Acknowledgements

This research was partly supported by TUBITAK (TUBITAK-NKTH Joint Research Project, Number 108O844).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.