500
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Mycotoxin co-occurrence in rice, oat flakes and wheat noodles used as staple foods in Ecuador

, , , &
Pages 2165-2176 | Received 09 Jul 2013, Accepted 03 Oct 2013, Published online: 07 Dec 2013
 

Abstract

The co-occurrence of aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisin B1 (FB1), zearalenone (ZEN), and HT-2 and T-2 toxins in the main Ecuadorian staple cereals (rice, oat flakes, and yellow and white wheat noodles) was evaluated. A ultra high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) method was developed and validated to screen for the presence of these mycotoxins in those cereal matrices. Matrix-matched calibration curves were used to compensate for ion suppression and extraction losses and the recovery values were in agreement with the minimum requirements of Regulation 401/2006/EC (70–110%). For most mycotoxins, the LODs obtained allowed detection in compliance with the maximum permitted levels set in Regulation EC/2006/1881, with the exception of OTA in all cereals and AFB1 in yellow noodles. Extra target analysis of OTA in oat flakes and wheat noodles was performed by HPLC with fluorescence detection. High rates of contamination were observed in paddy rice (23% DON, 23% FB1, 7% AFB1, 2% AFG1 and 2% AFG2), white wheat noodles (33% DON and 5% OTA) and oat flakes (17% DON, 2% OTA and 2% AFB1), whereas the rates of contamination were lower in polished rice (2% AFG1 and 4% HT-2 toxin) and yellow noodles (5% DON). Low rates of co-occurrence of several mycotoxins were observed only for white wheat noodles (5%) and paddy rice (7%). White noodles were contaminated with DON and/or OTA, while combinations of AFG1, AFB1, DON and FB1 were found in paddy rice. Yellow noodles were contaminated with DON only; oat flakes contained DON, OTA or AFB1, and polished rice was contaminated with AFG1 and HT-2 toxin.

Acknowledgments

The authors thank the authorities of the Minister of Agriculture, Livestock, Aquaculture and Fisheries (MAGAP) for their support during sampling of the rice, as well as to the supervisors of the mills. The authors are also very grateful to all members of the project “Food, Nutrition and Health”, especially Eng. Juana Cabrera, for their invaluable collaboration during sample collection.

Funding

The authors are grateful to the Flemish Interuniversity Council – Institutional University cooperation (VLIR-UOS) for its financial support, within the cooperation between Cuenca University (Ecuador) and Ghent University (Belgium). Frédéric Mestdagh was a postdoctoral researcher funded by the Research Foundation – Flanders (FWO-Vlaanderen).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.