821
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone

, , , , &
Pages 922-933 | Received 12 Dec 2014, Accepted 24 Feb 2015, Published online: 20 Mar 2015
 

Abstract

Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins produced by fungi of the genus Fusarium which frequently contaminate maize and grain cereals. Mycotoxin-contaminated feed endangers animal health and leads to economic losses in animal production. Several mycotoxin elimination strategies, including the use of commercially available DON and ZEN detoxifying agents, have been developed. However, frequently there is no scientific proof of the efficacy of such adsorbents and degrading products. We therefore tested 20 commercially available products claiming to detoxify DON and/or ZEN either by biodegradation (4 products) or a combination of degradation and adsorption (16 products) under aerobic and anaerobic conditions at approx. pH 7. Under the applied conditions, a complete reduction of DON and consequent formation of the known non-toxic metabolite DOM-1 was exclusively observed in samples taken from the anaerobic degradation experiment of one product. For all other products, incubated under aerobic and anaerobic conditions, a maximum DON reduction of 17% after 72 h of incubation was detected. Aerobic and anaerobic incubation of only one tested product resulted in complete ZEN reduction as well as in the formation of the less-toxic metabolites DHZEN and HZEN. With this product, 68–97% of the toxin was metabolised within 3 h. After 24 h, a ZEN reduction ≥ 60% was obtained with four additional products during aerobic incubation only. Six of the 20 investigated products produced α- and/or β-ZEL, which are metabolites showing similar oestrogenic activity compared to ZEN. Aerobic and anaerobic degradation to unknown metabolites with unidentified toxicity was obtained with 10 and 3 products, respectively. The results of our study demonstrate the importance of in vitro experiments to critically screen agents claiming mycotoxin detoxification.

Graphical Abstract

Acknowledgements

The authors express their gratitude to the Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development for the financial support of the Christian Doppler Laboratory for Mycotoxin Metabolism. We thank Heidi Schwartz-Zimmermann for fruitful discussions and careful revision of the manuscript. We are grateful to Gerlinde Bichl, Sylvia Caha, Oliver Greitbauer, Emanuel Ott and Veronika Slavik for their valuable help with degradation experiments, sample preparation and data evaluation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.