215
Views
1
CrossRef citations to date
0
Altmetric
Articles

Degradation of pesticides in wheat flour during noodle production and storage

, , &
Pages 1239-1247 | Received 26 Mar 2022, Accepted 28 Apr 2022, Published online: 19 May 2022
 

Abstract

The fate of five pesticides comprising triadimefon, imidacloprid, fenitrothion, chlorpyrifos-methyl, and chlorpyrifos in wheat flour during noodle production and accelerated storage was systematically investigated. Pesticide residues were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD) after each processing step and accelerated storage. The results indicated that dough mixing reduced the concentration of five pesticide residues by 23–42%, mainly owing to the increase of moisture content. Dough resting had little effect on the residues of triadimefon, imidacloprid, and fenitrothion, but decreased chlorpyrifos-methyl and chlorpyrifos significantly by 24% and 15%, respectively. The pesticide residues increased by 3% to 69% during the drying step, attributed to the different role played by thermal evaporation or thermal degradation and concentration of the different pesticides. Boiling lowered the pesticide residues significantly by 56% to 74% in both fresh noodles and dried noodles. All the pesticide residues decreased during accelerated storage, especially for fenitrothion, chlorpyrifos-methyl, and chlorpyrifos. The processing factors (PFs) of the five pesticides in the drying step were greater than 1, while the others were all less than 1. The whole process for noodle production was beneficial to reduce the pesticide residues with PFs ranging from 0.15 to 0.35. The PFs of five pesticides in accelerated storage were all below 1.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

This work was supported by the National Program on Key Research Project of China (2019YFE0103900); European Union’s Horizon 2020 Research and Innovation Program (861917-SAFFI); and Risk monitoring of Jiangsu Forestry Bureau (No. LYKJ [2020]13).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.