93
Views
0
CrossRef citations to date
0
Altmetric
Articles

Determination, temporal variation and potential health risk assessment of pesticide residues in grapes from South and Southwest China

ORCID Icon, , , , , , & show all
Pages 287-302 | Received 26 Oct 2023, Accepted 19 Jan 2024, Published online: 31 Jan 2024
 

Abstract

Pesticide residues in grapes from South and Southwest China were determined using the QuEChERS procedure and UHPLC-MS/MS and GC-MS/MS methods. The 4-year monitoring and survey showed 94.6% of the 1341 samples of grapes collected from eight main production areas contained one or multiple pesticide residues (above the respective LOQs). Overall, 40 pesticides were detected, including 24 fungicides, 12 insecticides, 2 acaricides and 2 plant growth modulators, of which one pesticide was unauthorised for use in treating grapes. Two or more pesticide residues were discovered in 87.4% of the samples (above the respective LOQs), and pesticide residues in 5.7% of the samples exceeded the MRLs, such as difenoconazole, cyhalothrin, propiconazole, etc. The main risk factors affecting the safety of grape before 2019 were difenoconazole, cyhalothrin and cyazofamid. After 2019, however, the frequency of occurrence of the above pesticides significantly declined, and the banned or restricted pesticides including omethoate were not found, which was credited to the stricter supervision and management policies by local governments. Despite the high detection rates and multi-residue occurrence of pesticides in grapes, about 84% of the samples were compliant with regulatory standards. Moreover, the accumulative chronic diet risk determined from ADI is very low. This study and timely monitoring can ensure that grape growers comply with GAP and minimise the occurrence of residues.

Acknowledgements

The author gratefully acknowledges the use of the facilities, equipment and resources of the Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs.

Disclosure statement

The author declares to have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Funding

This work was supported by Special Fund of Technological Innovation System Construction of Modern Agriculture (CARS-26).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.