193
Views
53
CrossRef citations to date
0
Altmetric
Articles

Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment

, , , &
Pages 6194-6200 | Received 10 Oct 2012, Accepted 10 Dec 2012, Published online: 10 May 2013
 

Abstract

Polyethersulfone (PES) membranes are extensively used as ultrafiltration (UF) membrane owing to their superior thermal, mechanical, and chemical stability. However, commercial PES membranes are more prone to fouling, which contributes to severe decline in permeate flux with operation time. To improve the commercial PES UF membrane anti-protein fouling properties, negatively charged functionalized multi-walled carbon nanotube (f-MWCNTs), blended poly(sodium 4-styrenesulfonate) (PSS), and positively charged poly(diallyldimethylammonium chloride) (PDDA) were deposited on 20 kDa PES substrate through spray-assisted layer-by-layer (LbL) technique. Further cross-flow UF tests were conducted with bovine serum albumin (BSA) as model protein. The total flux loss results show that surface-modified PES membranes are less susceptible to protein fouling by one-hour BSA filtration. Moreover, flux recovery ratios show that 20-min de-ionized (DI) water flushing is effective to restore water flux of the prepared membrane without aggressive chemical cleaning. Based on the experimental results, the excellent anti-fouling properties render the prepared membranes suitable for recycling utilization.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Nos. 2011-0027712 and 2012R1A2A2A03046711) and “Basic Research Projects in High-tech Industrial Technology” Project through a grant provided by GIST in 2013.

Notes

Presented at The Fifth Desalination Workshop (IDW 2012), October 28–31, 2012, Jeju, Korea

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.