322
Views
19
CrossRef citations to date
0
Altmetric
Articles

Desalination of brackish water using capacitive deionization (CDI) technology

, , , , , & show all
Pages 7659-7666 | Received 11 Nov 2014, Accepted 30 Mar 2015, Published online: 20 Apr 2015
 

Abstract

Capacitive deionization (CDI) is a desalination technology utilizing electrosorption and desorption of ionic salts. Carbon materials are the main components of electrodes in CDI, while addition of organic and inorganic materials with carbon materials enhances the desalination performance. In this study, powdered activated carbon (PAC) as well as PAC combined with titanium dioxide (TiO2) electrodes was prepared. The deionization performance was evaluated using three CDI systems. Feed solution having concentration of 2,000 mg/L was used in small- and lab-scale CDI systems. PAC + TiO2 electrodes showed 28% more salt removal as compared to PAC electrodes in the small-scale CDI system using one pair of electrodes. Laboratory-scale CDI system using six pairs of PAC + TiO2 electrodes showed adsorption capacities of 2.64, 4.30, and 6.67 mg NaCl/g-adsorbent at 1.3, 1.6, and 1.8 volts, respectively. Pilot scale CDI system using 20 pairs of PAC + TiO2 electrodes at 1.8 volts showed maximum salt removal of 84, 82, and 71% for the feed NaCl concentrations of 2,000, 2,500, and 3,000 mg/L with adsorption capacities of 7.7, 10.4, and 11.2 mg NaCl/g-adsorbent, respectively. As the amount of salt ions to adsorbent increases, the exchangeable sites on the adsorbent structure become saturated, which results in decrease of salt removal efficiency, while the adsorption capacities increased with increase in concentration due to elevated mass transfer rate of salt ions inside the pores.

Acknowledgments

The authors greatly acknowledge the financial support for the research project titled “WASH Action Research with Academia” provided by the Water Aid in Pakistan (WAP).

Notes

Presented at the 7th International Conference on Challenges in Environmental Science and Engineering (CESE 2014) 12–16 October 2014, Johor Bahru, Malaysia

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.