348
Views
25
CrossRef citations to date
0
Altmetric
Articles

Compaction and relaxation of biofilms

, , , , , , & show all
Pages 12902-12914 | Received 20 Apr 2015, Accepted 27 May 2015, Published online: 18 Jun 2015
 

Abstract

Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more compact biofilms with a higher hydraulic resistance.

Acknowledgements

This work was performed at Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union European Regional Development Fund, the Province of Fryslân, the city of Leeuwarden and by the EZ-KOMPAS Programme of the “Samenwerkingsverband Noord-Nederland.” The work was funded by Wetsus, King Abdullah University of Science and Technology (KAUST) and Evides waterbedrijf. The authors like to thank the participants of the Wetsus research theme “Biofouling,” KAUST and Evides waterbedrijf for the fruitful discussions and their financial support. In addition, the authors would especially like to thank the student Melvin Boelens for his great support with the experimental work in the laboratory.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.