1,532
Views
3
CrossRef citations to date
0
Altmetric
Editorial

Gut microbes effects on host metabolic alterations in health and disease

Gut microbiota, specifically, their composition, metabolites, and signaling, are associated with both systemic and local metabolic reprogramming. Systemic metabolic reprogramming is linked to the development and progression of diabetes, liver diseases, inflammation, obesity, and cancer.Citation1Citation7 Local metabolic reprogramming, particularly within intestinal tissues, has emerged as a hallmark of intestinal pathobiology seen with Inflammatory Bowel Disease (IBD) and colon cancer.Citation2,Citation7-Citation10 This special issue of Gut Microbes features review manuscripts and original research findings related to microbiota-driven systemic and local metabolic reprogramming with several major diseases, as depicted above.

Type 2 diabetes is characterized by dysbiosis in gut microbiota, which is recognized as a potential cause of insulin resistance.Citation1,Citation11,Citation12 Studies using germ-free mice demonstrate that a lack of gut microbiota is protective against diet-induced diabetes.Citation13 Bacterial lipopolysaccharides may leak from the gut lumen into portal circulation resulting in the activation of inflammatory response and consequent insulin resistance.Citation14 Further, deficient signaling from the receptor of a bacterial product known as TLR5 contributes to aberrant microbiota and insulin resistance in mice.Citation15,Citation16 The transfer of these aberrant microbiota from TLR5-deficient mice to the gut of wild-type, germ-free mice also initiates insulin resistance.Citation15,Citation16 Similarly, findings in human cohorts demonstrate that patients with Type 2 diabetes have altered microbiota composition.Citation17,Citation18 Studies transplanting fecal microbiota or by administrating probiotics positively impacted patients with Type 2 diabetes.Citation19Citation21 Collectively, these animal models and clinical studies demonstrate that the modulation of gut microbiota could offer an effective approach for diabetes management, as reviewed in this issue by Adeshirlarijaney and Gewirtz.Citation1

Liver metabolic disease associated with alcohol abuse has recently been characterized by changes in gut microbiota.Citation3,Citation4 Individuals who abuse alcohol have an overgrowth of gut bacteria and alterations in their composition.Citation22,Citation23 Schnabl’s lab original study demonstrates that alcohol consumption increases bacterial presence in the intestinal mucosa and, with the progression of liver metabolic disease, increases bacterial translocation to mesenteric lymph nodes and the liver.Citation24 This novel concept led Dr. Schnabl to perform a comprehensive microbiome analysis of intestine and liver in ethanol-fed mice.Citation25 They showed that chronic ethanol consumption changes the alpha diversity of microbiota in the ileum and the liver. This effect is largely driven by an increase in the production of gram-negative bacteria, phyla-mediated endotoxins, and Prevotella in ileum and liver. These findings demonstrated that bacterial translocation to the liver, e.g. liver microbiota, due to alcohol-mediated changes of microbiota in the distal intestinal tract may drive liver metabolic disease.

Gut microbiota metabolize dietary fatty acids before they are absorbed and changes in microbiota composition lead to an imbalance in these metabolites that could facilitate metabolic disorders, inflammation, and tumor growth.Citation26 Specifically, Hosomi et al. show that imbalances in the composition and production of fatty acid metabolites are critical in driving two major intestinal diseases, IBD and colon cancer.Citation2 Further, with respect to IBD, patients have significantly elevated systemic lipid levels, mesenteric fat accumulation, and intracellular lipid accumulation.Citation27,Citation28 These elevated lipids can drive inflammation, and their blockade in mouse models ameliorates intestinal inflammation.Citation29 Moreover, human colon cancer tissue highly expresses a substantial number of regulators of lipid metabolism, several of which can predict survival in colon cancer patients.Citation30,Citation31 Also, sphingolipids regulators and their pathways contribute to colonic tumorigenesis and, as such, are both potential targets for chemoprevention.Citation32 Further, increased intracellular lipids, in the form of lipid droplets, facilitate inflammatory and growth responses in human and mouse colon.Citation33Citation37 These fatty acid-derived lipid mediators may drive intestinal inflammatory and tumorigenic demands by providing structural, energetic, and biosynthetic precursors for tissue repair and growth.

Gut microbiota elicit intracellular metabolic alterations in local intestinal cells. The process is prominent in mitochondria, which are organelles essential to metabolic energy production and cell signaling.Citation38Citation40 Certain microbiota has a positive effect on mitochondrial metabolic function by controlling PGC1α, a master regulator of mitochondrial biogenesis, leading to increased energy production.Citation41 As reviewed by Jackson and Theiss, metabolic reprogramming of mitochondria is critical in the progression of IBD and colon cancer.Citation8 In IBD-affected tissues, mitochondrial genes expression is decreased, leading to energy depletion.Citation42Citation45 There is also an association between active bacterial signaling and reduced mitochondrial energy function, as demonstrated by comprehensive bioinformatics analysis of IBD transcriptomes conducted by Ruiz et al.Citation46 By generating a transcriptional signature unique to intestinal cells with reduced mitochondrial energy production (Mito-0), Ruiz et al. demonstrated that bacterial TLR4 and NOD2 transcriptional signatures are strongly associated with the Mito-0 signature in inflamed IBD transcriptomes. Further, dysfunction in mitochondrial metabolism and signaling are also associated with cancer progression.Citation38,Citation39,Citation47 Altered gut microbiota composition creates mutations in mitochondrial DNA; it also influences nuclear gene expression and methylation in the intestinal cells, thereby affecting oncogenes, tumor suppressors, and signaling pathways associated with tumor growth.Citation48Citation51 Future studies are needed to better understand how bacterial-to-mitochondrial signaling enhances intestinal homeostasis and pathobiology within IBD and tumorigenesis.

In conclusion, aberrant gut microbiota composition, which also includes their products, metabolites, and signaling, is associated with metabolic reprogramming in diverse systemic and local pathobiology. The role of microbiota is highlighted by studies related to diabetes, metabolic changes in liver mediated by excess alcohol consumption, IBD, and colonic tumorigenesis.Citation1,Citation2,Citation8,Citation25,Citation46 Forthcoming accumulation of scientific evidence of microbiota-mediated metabolic reprogramming will lead to a comprehensive understanding of different human pathobiology and targeting the gut microbiota-metabolism axis could offer an effective approach in the management of many diseases.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

  • Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020;11(03):253–264. doi:10.1080/19490976.2020.1717719.
  • Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes. 2019;11(03):276–284. doi:10.1080/19490976.2019.1612662.
  • Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P, Windey K, Tremaroli V, Bäckhed F, Verbeke K, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A. 2014;111(42):E4485–93. doi:10.1073/pnas.1415174111.
  • Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK, Keshavarzian A. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G966–78. doi:10.1152/ajpgi.00380.2011.
  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–11075. doi:10.1073/pnas.0504978102.
  • Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, McCartney AL, Gibson GR, Nicholson JK. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J Proteome Res. 2009;8:2361–2375. doi:10.1021/pr8009885.
  • Song M, Chan AT. Diet, gut microbiota, and colorectal cancer prevention: a review of potential mechanisms and promising targets for future research. Curr Colorectal Cancer Rep. 2017;13:429–439. doi:10.1007/s11888-017-0389-y.
  • Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2019;11(03):253–264. doi:10.1080/19490976.2019.1592421.
  • DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. doi:10.1126/sciadv.1600200.
  • Kim A. Mitochondria in cancer energy metabolism: culprits or bystanders? Toxicol Res. 2015;31:323–330. doi:10.5487/TR.2015.31.4.323.
  • Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi:10.1126/science.1104816.
  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi:10.1038/nature05414.
  • Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–984. doi:10.1073/pnas.0605374104.
  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi:10.2337/db06-1491.
  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–231. doi:10.1126/science.1179721.
  • Carvalho FA, Koren O, Goodrich JK, Johansson MV, Nalbantoglu I, Aitken J, Su Y, Chassaing B, Walters W, González A, et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012;12(2):139–152. doi:10.1016/j.chom.2012.07.004.
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450.
  • Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi:10.1038/nature12198.
  • Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, Dallinga–Thie GM, Ackermans MT, Serlie MJ, Oozeer R, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7. doi:10.1053/j.gastro.2012.06.031.
  • de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2020;69:502–512.
  • Razmpoosh E, Javadi M, Ejtahed H-S, Mirmiran P. Probiotics as beneficial agents in the management of diabetes mellitus: a systematic review. Diabetes Metab Res Rev. 2016;32(2):143–168. doi:10.1002/dmrr.2665.
  • Bode JC, Bode C, Heidelbach R, Dürr HK, Martini GA. Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology. 1984;31:30–34.
  • Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, Gobejishvili L, Joshi-Barve S, Ayvaz T, Petrosino J, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One. 2013;8(1):e53028. doi:10.1371/journal.pone.0053028.
  • Wang L, Fouts DE, Starkel P, Hartmann P, Chen P, Llorente C, DePew J, Moncera K, Ho S, Brenner D, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe. 2016;19(2):227–239. doi:10.1016/j.chom.2016.01.003.
  • Bluemel S, Wang L, Kuelbs C, Moncera K, Torralba M, Singh H, Fouts DE, Schnabl B. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes. 2019;11(03):265–275. doi:10.1080/19490976.2019.1595300.
  • Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. doi:10.3389/fphys.2017.00902.
  • Baur P, Martin F-P, Gruber L, Bosco N, Brahmbhatt V, Collino S, Guy P, Montoliu I, Rozman J, Klingenspor M, et al. Metabolic phenotyping of the Crohn’s Disease-like IBD etiopathology in the TNF ΔARE/WT mouse model. J Proteome Res. 2011;10(12):5523–5535. doi:10.1021/pr2007973.
  • Bertin B, Desreumaux P, Dubuquoy L. Obesity, visceral fat and Crohnʼs disease. Curr Opin Clin Nutr Metab Care. 2010;13(5):574–580. doi:10.1097/MCO.0b013e32833cf0f4.
  • Matsuo S, Yang W-L, Aziz M, Kameoka S, Wang P. Fatty acid synthase inhibitor C75 ameliorates experimental colitis. Mol Med. 2014;20(1):1–9. doi:10.2119/molmed.2013.00113.
  • Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, González-Vallinas M, Mendiola M, Burgos E, Aguayo C, Custodio AB, et al. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget. 2015;6(9):7348–7363. doi:10.18632/oncotarget.3130.
  • Currie E, Schulze A, Zechner R, Walther T, Farese R. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–161. doi:10.1016/j.cmet.2013.05.017.
  • Kawamori T, Kaneshiro T, Okumura M, et al. Role for sphingosine kinase 1 in colon carcinogenesis. Faseb J. 2009;23:405–414. doi:10.1096/fj.08-117572.
  • Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JPB, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68:1732–1740. doi:10.1158/0008-5472.CAN-07-1999.
  • Penrose H, Heller S, Cable C, Makboul R, Chadalawada G, Chen Y, Crawford SE, Savkovic SD. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6. Biochem Biophys Res Commun. 2016;469(3):370–376. doi:10.1016/j.bbrc.2015.11.119.
  • Heller S, Cable C, Penrose H, et al. Intestinal inflammation requires FOXO3 and Prostaglandin E2 dependent lipogenesis and elevated lipid droplets. Am J Physiol Gastrointest Liver Physiol. 2015;2016(ajpgi):00407.
  • Maya-Monteiro CM, Almeida PE, D’Avila H, et al. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism. J Biol Chem. 2008;68(4):1732–1740. doi:10.1074/jbc.M706706200.
  • Qi W, Fitchev PS, Cornwell ML, Greenberg J, Cabe M, Weber CR, Roy HK, Crawford SE, Savkovic SD. FOXO3 growth inhibition of colonic cells is dependent on intraepithelial lipid droplet density. J Biol Chem. 2013;288(23):16274–16281. doi:10.1074/jbc.M113.470617.
  • Suliman HB, Piantadosi CA, Mattson MP. Mitochondrial Quality Control as a Therapeutic Target. Pharmacol Rev. 2016;68(1):20–48. doi:10.1124/pr.115.011502.
  • Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166(3):555–566. doi:10.1016/j.cell.2016.07.002.
  • Boekema EJ, Braun HP. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem. 2007;282:1–4. doi:10.1074/jbc.R600031200.
  • Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91–119.
  • Hsieh S-Y, Shih T-C, Yeh C-Y, Lin C-J, Chou -Y-Y, Lee Y-S. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 2006;6(19):5322–5331. doi:10.1002/pmic.200500541.
  • Sifroni KG, Damiani CR, Stoffel C, Cardoso MR, Ferreira GK, Jeremias IC, Rezin GT, Scaini G, Schuck PF, Dal-Pizzol F, et al. Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol Cell Biochem. 2010;342(1–2):111–115. doi:10.1007/s11010-010-0474-x.
  • Yu X, Wieczorek S, Franke A, Yin H, Pierer M, Sina C, Karlsen TH, Boberg KM, Bergquist A, Kunz M, et al. Association of UCP2 −866 G/A polymorphism with chronic inflammatory diseases. Genes Immun. 2009;10(6):601–605. doi:10.1038/gene.2009.29.
  • Heller S, Penrose HM, Cable C, Biswas D, Nakhoul H, Baddoo M, Flemington E, Crawford SE, Savkovic SD. Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation. Faseb J. 2017;31(5):2013–2025. doi:10.1096/fj.201600976R.
  • Ruiz E, Penrose HM, Heller S, Nakhoul H, Baddoo M, Flemington EF, Kandil E, Savkovic SD. Bacterial TLR4 and NOD2 signaling linked to reduced mitochondrial energy function in active inflammatory bowel disease. Gut Microbes. 2019;11(03):305–318. doi:10.1080/19490976.2019.1611152.
  • Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab. 2015;3:4. doi:10.1186/s40170-015-0130-8.
  • Clark A, Mach N. The Crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol. 2017;8:319. doi:10.3389/fphys.2017.00319.
  • Li K, Neufer PD, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. Am J Physiol. 1995;269(5):C1265–70. doi:10.1152/ajpcell.1995.269.5.C1265.
  • Smiraglia DJ, Kulawiec M, Bistulfi GL, Ghoshal S, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther. 2008;7(8):1182–1190. doi:10.4161/cbt.7.8.6215.
  • Strickertsson JAB, Desler C, Rasmussen LJ. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol. 2017;47:95–100. doi:10.1016/j.semcancer.2017.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.