212
Views
2
CrossRef citations to date
0
Altmetric
Articles

A thermodynamics-based damage constitutive model of concrete

&
Pages s83-s102 | Published online: 10 Oct 2013
 

Abstract

A thermodynamics-based damage constitutive model is developed for concrete, which describes tensile and compressive damage well and follows the second thermodynamic law. Constitutive model should meet general thermodynamics, while it describes behaviour characteristic of concrete material, which are often not able to be satisfied by existing models because of various of hypotheses. Generalised stress functions and dissipative generalised stress functions are constructed from free energy function and energy dissipation function according to the physical meaning of the thermodynamic potential and the characteristic of the constitutive model of concrete. Then, a damage constitutive model of concrete is developed and the parameters of the model are identified. The numerical method of the model is also presented. The model in the paper can satisfy the second thermodynamic law automatically and simulate the tensile and compressive behaviour of concrete well. Finally, the feasibility and practicality of the model is verified by the analysis of classical experiments and Koyna dam.

Acknowledgement

The support from National Dam Safety Research Center (The project no. is NDSKFJJ1101) is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.