278
Views
7
CrossRef citations to date
0
Altmetric
Articles

Finite element crack width computations with a thermo-hygro-mechanical-hydration model for concrete structures

, , , , , & show all
Pages 793-813 | Received 23 Sep 2013, Accepted 18 Feb 2014, Published online: 19 Mar 2014
 

Abstract

The paper presents an overview of a finite element approach for the analysis of the thermo-hygro-mechanical-hydration behaviour of concrete structures. The thermo-hygro component considers the mass balance equation of moisture as well as the enthalpy balance equation, and uses two primary variables, namely the capillary pressure and temperature. Heat of hydration is simulated using the approach of Schindler and Folliard. The basic mechanical model simulates directional cracking, rough crack closure and crushing using a plastic-damage-contact approach. Hydration dependency is introduced into the mechanical constitutive model. The material data from the Concrack benchmark are considered with the model. This includes data on adiabatic temperature changes during curing, changing elastic properties during curing, shrinkage and creep. The model, as implemented in the finite element program LUSAS, is used to analyse the Concrack benchmark beam RL1. Particular attention is paid to crack openings and the difference between predicted crack openings from analyses with and without time-dependent effects. It is concluded that ignoring time-dependent effects can result in a significant underestimate of crack openings in the working load range.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.