199
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A numerical study on interface shearing of granular Cosserat materials

, &
Pages 2337-2369 | Received 02 Aug 2018, Accepted 28 May 2019, Published online: 19 Jun 2019
 

Abstract

This article presents the interface shearing behaviour of a granular soil layer in contact with a bounding structure under motion. For this purpose, an elasto-plastic Cosserat continuum model (EPCCM) and finite element method (FEM) in the updated Lagrange frame are employed. Plane quasi-static shearing of a granular soil layer, bounded by upper and lower rigid boundaries with different surface roughness conditions, is simulated under free dilatancy and constant vertical pressure. Herein, the additional Cosserat kinematical boundary constraints along the bounding surfaces allow a more detailed description of the surface roughness. Specific emphasis is given to the effects of surface roughness as well as the boundary conditions of the entire system on the shear behaviour of layer. According to the obtained results, the shear band location is different in an infinite or finite shear layer depending on the adopted boundary constraints. Further numerical simulations of plane interface shearing are also carried out here using discrete element method (DEM), complementary to Cosserat FE analyses, to better understand the micro-mechanics of granular media near interfaces. FE results are compared with those of experiments as well as DEM simulations and reasonable agreements are seen. The evolution and distribution of state variables and polar quantities in DEM simulations are in proper accordance with the predictions of Cosserat FE model.

Acknowledgements

The first author thanks the Iran's National Elites Foundation (INEF) for its moral support and encouragement. The anonymous reviewers are greatly appreciated by the authors for their constructive comments and valuable suggestions that helped to improve the quality of the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.