358
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Identifying the parameters of a hydro-mechanical model for internal erosion occurring in granular soils by using an enhanced backtracking search algorithm

, , , &
Pages 2325-2344 | Received 25 Mar 2020, Accepted 02 Apr 2020, Published online: 27 Apr 2020
 

Abstract

Due to the complexity of the hydro-mechanical behaviour of soils subjected to internal erosion, a high number of parameters are usually required for the erosion models and the constitutive models. This aspect makes it difficult to determine by trial-error their relevant values from laboratory tests. To address this issue, an efficient optimisation-based procedure for identifying the parameters of a recently developed hydro-mechanical model for internal erosion using an enhanced backtracking search algorithm (so-called MBSA-LS) has been proposed. The MBSA-LS incorporates two points: (1) modifying the mutation of the original Backtracking Search Algorithm (BSA) and (2) incorporating an efficient differential evolution (DE) as a local search to improve the optimisation performance. A mono-objective framework with six different criteria has been proposed to identify the parameters related to the interlocking effect and the erosion process. The proposed procedure was successfully applied to identify the parameters from the erosion tests of Hong Kong-Completely Decomposed Granite mixture (HK-CDG). All results demonstrated that coupling the MBSA-LS and the hydro-mechanical erosion model could efficiently solve the issue of parameter identification accounting for both the mechanical behaviour and internal erosion.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The financial supports provided by a GRF project (Grant No. 15209119) from Research Grants Council (RGC) of Hong Kong and the National Institute for Industrial Environment and Risks of France (INERIS) are gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.