105
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Default Factors for Interspecies Differences in the Major Routes of Xenobiotic Elimination

, &
Pages 181-201 | Published online: 03 Jun 2010
 

Abstract

For the risk to human health posed by chemicals that show threshold toxicity there is an increasing need to move away from using the default approaches, which inherently incorporate uncertainty, towards more biologically defensible risk assessments. However, most chemical databases do not contain data of sufficient quantity or quality that can be used to replace either the interspecies or interindividual aspects of toxicokinetic and toxicodynamic uncertainty. The purpose of the current analysis was to evaluate the use of alternative, species-specific, pathway-related, “categorical” default values to replace the current interspecies toxicokinetic default uncertainty factor of 4.0. The extent of the difference in the internal dose of a compound, for each test species, could then be related to the specific route of metabolism in humans. This refinement would allow for different categories of defaults to be used, providing that the metabolic fate of a toxicant was known in humans. Interspecies differences in metabolism, excretion, and bioavailability have been compared for probe substrates for four different human xenobiotic-metabolizing enzymes: CYP1A2 (caffeine, paraxanthine, theobromine, and theophylline), CYP3A4 (lidocaine), UDP-glucuronyltransferase (AZT), and esterases (aspirin). The results of this analysis showed that there are significant differences between humans and the four test species in the metabolic fate of the probe compounds, the enzymes involved, the route of excretion and oral bioavailability — all of which are factors that can influence the extent of the difference between humans and a test species in the internal dose of a toxicant. The wide variability between both compounds and the individual species suggests that the categorical approach for species differences may be of limited use in refining the current default approach. However, future work to incorporate a wider database of compounds that are metabolized extensively by any pathway in humans to provide more information on the extent to which the different test species are not covered by the default of 4.0. Ultimately this work supports the necessity to remove the uncertainty from the risk assessment process by the generation and use of compound-specific data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.