374
Views
9
CrossRef citations to date
0
Altmetric
Articles

Ecosystem responses to increased organic carbon concentration: comparing results based on long-term monitoring and whole-lake experimentation

ORCID Icon, , ORCID Icon, , ORCID Icon, , , , ORCID Icon, , , & show all
Pages 489-502 | Received 27 Jul 2018, Accepted 22 Mar 2019, Published online: 30 Jul 2019
 

ABSTRACT

Recent increases in terrestrial dissolved organic carbon (DOC) concentrations in northern inland waters have many ecological consequences. We examined available data on carbon cycles and food webs of 2 boreal headwater lakes in southern Finland. Basic limnology and catchment characteristics of a pristine lake, Valkea-Kotinen (VK), were monitored over the past 25 years while the lake has undergone browning and DOC increased from ∼11 to 13 mg L−1. Pronounced changes in the early 2000s represent a regime shift in DOC concentration and color. Lake Alinen Mustajärvi (AM) was manipulated for 2 years by additions of labile DOC (cane sugar), raising the DOC concentration from ∼10 to 12 mg L−1, but not changing light conditions. The 2 different approaches both revealed increased concentrations and efflux of carbon dioxide (CO2) from the lakes and thus net heterotrophy and changes in the pelagic community structure following an increase in DOC concentration. Long-term monitoring of VK revealed a decline in phytoplankton primary production (PP) along with browning, which was reflected in retarded growth of young (1–2-year-old) perch. In the experimentally manipulated lake (AM), PP was not affected, and the growth of young perch was more variable. The results suggested the importance of a pathway from labile DOC via benthic invertebrates to perch. Although provided with this extra resource, the food chain based on DOC proved inefficient. Long-term monitoring and whole-lake experimentation are complementary approaches for revealing how freshwater ecosystems respond to climate and/or atmospheric deposition-induced changes, such as browning.

Acknowledgements

Long-term monitoring of Valkea-Kotinen was funded by Ministry of Environment and Lammi Biological Station, University of Helsinki. Fish studies were funded by the Natural Resources Institute Finland. The carbon addition experiment in Alinen Mustajärvi was funded by Academy of Finland project grant 114604 to professor Roger I. Jones. We thank 2 anonymous reviewers for the constructive criticism of the earlier versions of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.