424
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Selective convolutional neural networks and cascade classifiers for remote sensing image classification

, , &
Pages 917-926 | Received 18 Jan 2017, Accepted 15 May 2017, Published online: 14 Jun 2017
 

ABSTRACT

Training convolutional neural network (CNN) architecture fully, using pretrained CNNs as feature extractors, and fine-tuning pretrained CNNs on target datasets are three popular strategies used in state-of-the-art methods for remote sensing image classification. The full training strategy requires large-scale training dataset, whereas the fine-tuning strategy requires a pretrained model to resume network learning. In this study, we propose a new strategy based on selective CNNs and cascade classifiers to improve the classification accuracy of remote sensing images relative to single CNN. First, we conduct a comparative study of existing pretrained CNNs in terms of data augmentation and the use of fully connected layers. Second, selective CNNs, which based on class separability criterion, are presented to obtain an optimal combination from multiple pretrained models. Finally, classification accuracy is improved by introducing two-stage cascade linear classifiers, the prediction probability of which in the first stage is used as input for the second stage. Experiments on three public remote sensing datasets demonstrate the effectiveness of the proposed method in comparison with state-of-the-art methods.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Key Basic Research and Development Program of China under Grant 2012CB719903, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant 61221003, the National Natural Science Foundation of China under Grant 41571402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.