170
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Perceptually-motivated adversarial training for deep ensemble denoising of hyperspectral images

ORCID Icon &
Pages 767-777 | Received 02 Feb 2022, Accepted 08 May 2022, Published online: 31 May 2022
 

ABSTRACT

In this letter, we present a deep-learning-based methodology for recovering hyperspectral images (HSIs) distorted by Gaussian and impulsive noise. This work makes the following contribution: To begin with, the Wasserstein Generative Adversarial Network (WGAN) is used to mitigate the effects of vanishing gradient and mode collapse that can occur when training a vanilla GAN. Secondly, data are passed via three distinct pathways in a parallel ensemble to promote multiscale feature extraction. Normal and multiscale dilated 3D convolutions are utilized to train the model in each pair of parallel paths. Thirdly, features are recovered following data permutation across three different spatial planes (viz. xy,yz, and xz planes) and after passing through parallel convolutional blocks; to promote spatio-spectral similarity within and across the different layers of the HSI data. Fourthly, by adopting Structural Similarity (SSIM) as the content loss, the issue of loss in resolution encountered during adversarial training is mitigated. Finally, the incorporation of 3D depth-wise separable convolution and batch re-normalization (BRN) solves the major issue of computational burden encountered while processing HSI data. Extensive experimental evaluation on synthetically corrupted data and real HSI data (obtained from real hyperspectral sensors) under various degradation conditions suggests that the aforementioned denoising approach could be used in real time.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.