2,219
Views
13
CrossRef citations to date
0
Altmetric
Articles

Charge transfer in DNA and its diverse modelling approaches

, &
Pages 214-225 | Received 22 Mar 2016, Accepted 27 Jun 2016, Published online: 05 Aug 2016
 

ABSTRACT

DNA nanostructures with molecular recognition qualities have been developed, but the conceptualization of DNA-based molecular nanoelectronics is still a thought-provoking subject. An efficient and speedy charge transfer (CT) process through DNA nanoassembly is demanded for farther exploitation of DNA nanoelectronics with programmable features. The CT properties are represented in terms of localization lengths. Because of the DNA molecule’s unique and novel characteristics, it can be applied in a variety of multidisciplinary research areas such as nanobiomedicine, nanooptoelectronics and nanobiotechnology. By using this interesting phenomena, we can integrate nanotechnology with both, biology as well as engineering, and can use it as a tool for many biological and engineering applications such as DNA chips, DNA nanogrids and DNA nanoribbons. Here, we have presented a review on various experiments that measure CT and charge transport in DNA. It is a very wide and interesting area in which many scientists have published many articles. So here we have tried to show the whole picture of it.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.