28
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Effects of Military Body Armor on Isometric and Isokinetic Knee Behaviors

, , &
Pages 210-220 | Received 01 Mar 2015, Accepted 01 Sep 2015, Published online: 23 Dec 2015
 

OCCUPATIONAL APPLICATIONS

Despite the proven effectiveness of new-generation body armor against ballistic threats, small arms, and improvised explosive devices, such body armor has become a source of concern for warfighters' performance and musculoskeletal injuries. Prolonged periods of performing physical activities, with versus without body armor, were found to alter knee neuromuscular behavior. With body armor, the maximum strength of the knee flexors and the extensor-to-flexor strength ratio were found, respectively, to reduce and increase than in conditions without body armor. Such changes in knee neuromuscular behavior are known to adversely affect physical performance and risk of knee injury. Quantitative information related to changes in knee neuromuscular behavior induced by body armor can be used in the design of injury risk assessment tools, physical training programs that decrease or correct a particular imbalance, and to establish return to service (i.e., post injury) standards for dismounted warfighters.

TECHNICAL ABSTRACT Background: Knee injuries among military service members have a substantially high prevalence. Dismounted warfighters often must navigate diverse environments while wearing body armor. Purpose: Given the suggested role of body armor mass on a warfighter's performance and risk of injury, the immediate and prolonged effects of body armor on the neuromuscular behavior of knee flexors and extensors were investigated. Methods: Body armor-induced changes in selected measures related to isometric and isokinetic behaviors of the knee were quantified using a commercial dynamometer. This was done in two testing sessions, with and without body armor, by assessing neuromuscular behaviors of the knee before and after participants completed a battery of basic and military-inspired tests, as well as a 45-minute brisk walking protocol. Results: Completing tests with body armor versus no armor was found to cause a greater change (i.e., reduction of ∼10 N·m) in maximum isometric strength of the knee flexors. It also was found to be associated with a significant increase in conventional/functional strength ratios. While there was no significant difference in maximum isometric knee extensor strength between genders at baseline, females demonstrated a significant reduction (∼16 N·m) following completion of tests regardless of the body armor condition. Conclusion: In general, the prolonged duration of wearing body armor was found to cause changes in the neuromuscular behavior of knee flexors and extensors that have been suggested in the literature to be associated with a higher risk of injury and reduced warfighter performance.

FUNDING

M.P.P acknowledges support from VA Chapter 33. Statistical assistance was provided by the University of Kentucky's Center for Clinical and Translational Science (grants UL1RR033173 and UL1TR000117).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.