374
Views
5
CrossRef citations to date
0
Altmetric
Articles

Alkali activation of mechanically activated low-grade clay

, , & ORCID Icon
 

Abstract

This article reports the results of an investigation into the efficiency of mechanical activation to increase the reactivity in alkali activated mortar synthesized from low-grade clay. Mechanical activation significantly changed the structure of clay, increasing the specific surface area, and decreasing the particle size. The 7-day compressive strength of mortar synthesized from untreated clay was 31.7 MPa, which increased to 35.3 after 4 h milling. A further increase of grinding time to 8 h did not result in any increase in compressive strength which is attributed to a decrease in the workability. However, the extent of reactivity did significantly increase as determined from solid-state MAS NMR, FTIR, and EDS analyses. Solid-state MAS NMR results revealed the increased formation of Q4(2Al) silicon sites, which is correlated with improved reaction. Furthermore, the EDS and FTIR analysis results indicated greater incorporation of aluminium into the matrix structure with increased grinding time.

Acknowledgment

The authors would like to acknowledge the use of facilities within the RMIT Microscopy and Microanalysis Facility (RMMF) and RMIT School of Science chemistry laboratories.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.