330
Views
5
CrossRef citations to date
0
Altmetric
Technical Reports

One-phase improvement of sandy soil using seawater-based soybean-induced carbonate precipitation

&
 

Abstract

Seawater-based soybean-induced carbonate precipitation (SSICP) was proposed for sandy soil improvement. A series of comparative bio-cementation tests on Ottawa sand and sea sand through SSICP and deionized water-based soybean-induced carbonate precipitation (SICP) were carried out. Experimental results indicate that seawater can be used to extract soybean urease. It has a certain negative effect on urease activity, but SSICP method has better sand improvement performance. When the soybean powder concentration is 100 g/L and soaking time is 60 min, related urease activity exceeds 2.50 U. It increases as the soaking time increases before 60 min, and then decreases. Generally, urease activity of deionized water-extracted soybean urease is higher than that extracted by seawater. The compressive strength of SSICP bio-cemented Ottawa sand blocks reaches 401.67 kPa, which is about twice of that bio-cemented by SICP (191.62 kPa). The better sand improvement mechanism of the SSICP method can be attributed to the mixture of calcium carbonate and calcite magnesium produced by the SSICP process is beneficial to improve sand strength compared to calcite only produced by the SICP process. The performance of carbonate precipitation and bio-cementation on Ottawa sand is better than those on sea sand, resulting in lower compressive strength and carbonate content of sea sand blocks.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The research described in this paper was financially supported by the Opening Funds of Jiangsu Key Laboratory of Construction Materials of Southeast University (Grant No. CM2018-02), the National Natural Science Foundation of China (Grant Nos. 51702238, 42007244), and opening Funds of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (grant No. SKLGP2021K013). Their financial support is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.