106
Views
0
CrossRef citations to date
0
Altmetric
Report

Optimization design and microstructure analysis of ultra-high performance cement-based composites

, &
 

Abstract

Good workability and mechanical properties are both important for ultra-high performance cement-based composites (UHPCC). To achieve this goal, UHPCC was produced through a cost-effective approach of substituting cement with mineral admixtures. Based on Modified Andreasen and Andersen grading (MAA) model and orthogonal experimental design, key factors were identified and analyzed. The effect of the sand-to-binder ratio on bulk packing density was examined, while the impact of water-to-binder ratio and sand-to-binder ratio on the workability and mechanical properties of UHPCC was systematically studied. Additionally, X-CT was utilized to quantitatively analyze the steel fiber distribution and mesoscopic pore structure of UHPCC. Results indicated that the sand-to-binder ratio had the significant effect on bulk density, with the optimal ratio being 1.25. The suitable fluidity of UHPCC was between 245–255mm, with an optimal water-to-binder ratio of 0.18. The compressive and flexural strength of the mortar prepared with the optimal parameters were 167.5 MPa and 41.2 MPa, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (2019YFC1904902 and 2018YFC0705400) and National Natural Science Foundation of China (no. 51678142).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.