1,218
Views
0
CrossRef citations to date
0
Altmetric
Review

S1P in the development of atherosclerosis: roles of hemodynamic wall shear stress and endothelial permeability

ORCID Icon &
Article: 1959243 | Received 15 Apr 2021, Accepted 19 Jul 2021, Published online: 18 Sep 2021
 

ABSTRACT

Atherosclerosis is characterized by focal accumulations of lipid within the arterial wall, thought to arise from effects of hemodynamic wall shear stress (WSS) on endothelial permeability. Identifying pathways that mediate the effects of shear on permeability could therefore provide new therapeutic opportunities. Here, we consider whether the sphingosine-1-phosphate (S1P) pathway could constitute such a route. We review effects of S1P in endothelial barrier function, the influence of WSS on S1P production and signaling, the results of trials investigating S1P in experimental atherosclerosis in mice, and associations between S1P levels and cardiovascular disease in humans. Although it seems clear that S1P reduces endothelial permeability and responds to WSS, the evidence that it influences atherosclerosis is equivocal. The effects of specifically pro- and anti-atherosclerotic WSS profiles on the S1P pathway require investigation, as do influences of S1P on the vesicular pathways likely to dominate low-density lipoprotein transport across endothelium.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by BHF project grants to PDW and a BHF Intermediate Basic Science Fellowship to CMW.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.