3,855
Views
41
CrossRef citations to date
0
Altmetric
Articles

Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis

, , , &
Pages 1171-1179 | Received 01 Jul 2017, Accepted 05 Aug 2017, Published online: 31 Aug 2017
 

Abstract

Mosquitoes pose a threat to humans and animals, causing millions of deaths every year. Vector control by effective eco-friendly pesticides of natural origin is a serious issue that requires urgent attention. The employment of green-reducing extracts for nanoparticles biosynthesis in a rapid and single-step process represents a promising strategy. In this study, silver nanoparticles (AgNPs) were biofabricated using an essential oil of Aquilaria sinensis (AsEO) and Pogostemonis Herba essential oil of Pogostemon cablin (PcEO) in one step and cost-effective manner. UV–vis spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to confirm the AgNPs formation and their biophysical characterization. The larvicidal and pupicidal toxicity of AsEO, PcEO and biosynthesized AgNPs were evaluated against larvae and pupae of the dengue and Zika virus vector Aedes albopictus. Compared to the tested essential oils, the biofabricated AgNPs showed the highest toxicity against larvae and pupae of Ae.albopictus. In particular, the LC50 values of AsEO ranged from 44.23 (I) to 166 (pupae), LC50 values of PcEO ranged from 32.49 (I) to 90.05(IV), LC50 values of AsEO-AgNPs from 0.81 (I) to 1.12 (IV) and LC50 values of PcEO-AgPNs from 0.85 (I) to 1.19 (IV). Furthermore, histological analysis of the midgut cells of the control and treated larvae exhibited that the epithelial cells and brush border were highly affected by the fabricated AgNPs compared to the essential oils (AsEO and PcEO). Overall, the A. sinensis and P. cablin essential oils fabricated AgNPs have a potential of application as a biopesticide for mosquito control through safer and cost-effective approach.

Acknowledgements

The authors are grateful to the authorities of Zhejiang University for providing the necessary facilities to carry out this research work.

Disclosure statement

The authors declare that they have no conflict of interest.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Funding

National Natural Science Foundation of China10.13039/50110000180981271873
This work was financially supported by the National Natural Science Foundation of China [81271873].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.