3,619
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study

, , , , , & show all
Pages 511-522 | Received 28 Dec 2020, Accepted 01 Jun 2021, Published online: 21 Jun 2021
 

Abstract

The present study aimed to investigate the brain targeting efficacy of Lamotrigine (LTG) loaded PLGA nanoparticles (LTG-PNPs) upon intranasal administration. LTG-PNPs were fabricated through the emulsification-solvent evaporation technique and evaluated for % Entrapment efficiency, particle size, in-vitro release, surface morphology, crystallinity, ex-vivo permeation & thermal behaviour. Biodistribution, gamma scintigraphy, and pharmacodynamic studies were performed in BALB/c mice, New Zealand rabbits, and Wistar rats respectively. LTG-PNPs exhibited % EE 71%; particle size 170.0 nm; Polydispersity index 0.191; zeta potential −16.60 mV. LTG-PNPs exhibited a biphasic release pattern. Biodistribution and gamma scintigraphy studies proved a greater amount of LTG in the brain following intranasal delivery of LTG-PNPs in comparison to LTG-SOL. Pharmacodynamic studies demonstrated delayed seizure onset time with LTG-PNPs in comparison to LTG-SOL. Intranasal administration of LTG-PNPs provided prolonged release, higher bioavailability, and better brain targeting bypassing the BBB. The developed formulation could be administered as a once-a-day formulation that would reduce the dosing frequency; dose; dose-related side effects; cost of the therapy and would be beneficial in the management of epilepsy as compared to the LTG-SOL. However, the proof of concept generated through these studies needs to be further validated in higher animals and human volunteers.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).