793
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Learning to schedule (L2S): adaptive job shop scheduling using double deep Q network

ORCID Icon &
Pages 409-423 | Received 10 Jan 2023, Accepted 25 Feb 2023, Published online: 09 Mar 2023
 

ABSTRACT

The stochasticity and randomly changing nature of the production environment posed a significant challenge in developing real-time responsive scheduling solutions. Many previous scheduling solutions assumed static environments, user-anticipated, and hand-crafted dynamic scenarios. However, real-world production environment events are random and unpredictable. This study considers Job Shop Scheduling Problem (JSSP) as an iterative decision-making problem, and Deep Reinforcement Learning (DRL)-based solution is designed to address these challenges. A deep neural network is utilized for function approximation, and the input feature vectors are extracted iteratively to be used in the sequential decision-making process. The production states are expressed with randomly changing feature vectors of each job’s operations and the corresponding machines. This work proposes Double Deep Q Network (DDQN) methods to train the model. Results are evaluated on the renowned OR-Library benchmark problems. The evaluation result indicates that the proposed approach is comparative in benchmark problems, and the scheduling agent can get good results in unseen instances with an average of 94.86% of the scheduling score.

Graphical abstract

Acknowledgments

This research was supported through computational resources of HPC-MARWAN (https://hpc.marwan.ma/)provided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.