742
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Some aspects on hesitant fuzzy soft set

& | (Reviewing Editor)
Article: 1223951 | Received 08 Apr 2016, Accepted 04 Aug 2016, Published online: 06 Sep 2016

Abstract

In this paper, we introduce some operations on hesitant fuzzy soft sets and discuss some of their properties.

AMS subject classification:

Public Interest Statement

The hesitant fuzzy set, as one of the extension of fuzzy set, allows the membership degree that an element to a set presented by several possible values, and it can express the hesitant information more comprehensively than other extensions of fuzzy set. The hesitant fuzzy set is an effective tool used to express the decision-makers hesitant preferences in the process of decision-making, aggregation, distance, similarity and correlation measures, clustering analysis, and decision-making with hesitant fuzzy information.

1. Introduction

The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets, introduced by Zadeh in (Citation1965). This theory brought a paradigmatic change in mathematics. But there exists difficulty, how to set the membership function in each particular case. The theory of intuitionistic fuzzy sets (see Atanassov, Citation1986) is a more generalized concept than the theory of fuzzy sets, but this theory has the same difficulties. All the above-mentioned theories are successful to some extent in dealing with problems arising due to vagueness present in the real world. But there are also cases where these theories failed to give satisfactory results, possibly due to inadequacy of the parameterization tool in them. As a necessary supplement to the existing mathematical tools for handling uncertainty, in Molodtsov (Citation1999) initiated the theory of soft sets as a new mathematical tool to deal with uncertainties while modeling the problems in engineering, physics, computer science, economics, social sciences, and medical sciences. In Molodtsov, Leonov, and Kovkov (Citation2006) successfully applied soft sets in directions such as smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability, and theory of measurement. Maji, Biswas, and Roy (Citation2002) gave the first practical application of soft sets in decision-making problems. Maji, Biswas, and Roy (Citation2003) defined and studied several basic notions of the soft set theory. Also, Çaǧman and Enginoǧlu (Citation2010) studied several basic notions of the soft set theory. Maji, Biswas, and Roy (Citation2001) introduced the concepts of fuzzy soft set theory. The hesitant fuzzy set, as one of the extension of Zadeh (Citation1965) fuzzy set, allows the membership degree that an element to a set presented by several possible values, and it can express the hesitant information more comprehensively than other extensions of fuzzy set. In Torra and Narukawa (Citation2009) introduced the concept of hesitant fuzzy set. In Xu and Xia (Citation2011) defined the concept of hesitant fuzzy element, which can be considered as the basic unit of a hesitant fuzzy set, and is a simple and effective tool used to express the decision-makers hesitant preferences in the process of decision-making. So many researchers (see Liao & Xu, Citation2014; Xia & Xu, Citation2011) has done lots of research work on aggregation, distance, similarity and correlation measures, clustering analysis, and decision-making with hesitant fuzzy information. In Babitha and John (Citation2013) defined another important soft set hesitant fuzzy soft sets. They introduced basic operations such as intersection, union, compliment, and De Morgan’s law was proved. Broumi and Smarandache (Citation2014) introduced the operations over interval-valued intuitionistic hesitant fuzzy sets and proved some basic reaults. In Wang, Li, and Chen (Citation2014) applied hesitant fuzzy soft sets in multicriteria group decision-making problems. Torra (Citation2010), Torra and Narukawa (Citation2009), and Verma and Sharma (Citation2013) discussed the relationship between hesitant fuzzy set and showed that the envelope of hesitant fuzzy set is an intuitionistic fuzzy set. A lot of work has been done about hesitant fuzzy sets, however, little has been done about the hesitant fuzzy soft sets.

In this paper, we study some operations on hesitant fuzzy soft set. We also establish some interesting properties of this notion.

2. Preliminary results

In this section, we recall some basic concepts and definitions regarding fuzzy soft sets, hesitant fuzzy set, and hesitant fuzzy soft set.

Definition 2.1

Maji et al. (Citation2001)    Let U be an initial universe and F be a set of parameters. Let P~(U) denote the power set of U and A be a non-empty subset of F. Then, FA is called a fuzzy soft set over U, where F:AP~(U) is a mapping from A into P~(U).

Definition 2.2

Molodstov (Citation1999)   FE is called a soft set over U if and only if F is a mapping of E into the set of all subsets of the set U.

In other words, the soft set is a parameterized family of subsets of the set U. Every set F(ϵ),ϵ~E, from this family may be considered as the set of ϵ-element of the soft set FE or as the set of ϵ-approximate elements of the soft set.

Definition 2.3

Torra (Citation2010)   Given a fixed set X, then a hesitant fuzzy set (shortly HFS) in X is in terms of a function that when applied to X return a subset of [0, 1]. We express the HFS by a mathematical symbol:

F={<h,μF(x)>:hX}, where μF(x) is a set of some values in [0,1], denoting the possible membership degrees of the element hX to the set F. μF(x) is called a hesitant fuzzy element (HFE) and H is the set of all HFEs.

Definition 2.4

Torra (Citation2010)   Let μ1,μ2H and three operations are defined as follows:

(1)

μ1C=γ1μ1{1-γ1};

(2)

μ1μ2=γ1μ1,γ2μ2max{γ1,γ2};

(3)

μ1μ2=γ1μ1,γ2μ2min{γ1,γ2}.

Definition 2.5

Wang, Li, and Chen (Citation2014)   Let U be an initial universe and E be a set of parameters. Let F~(U) be the set of all hesitant fuzzy subsets of U. Then, FE is called a hesitant fuzzy soft set (HFSS) over U, where F~:EF~(U).

A HFSS is a parameterized family of hesitant fuzzy subsets of U, i.e. F~(U). For all ϵ~E,F(ϵ) is referred to as the set of ϵ- approximate elements of the HFSS FE. It can be written as F(ϵ)~={<h,μF(ϵ)(x)~>:hU}.

Since HFE can represent the situation, in which different membership function are considered possible (see Torra, Citation2010), μF(ϵ)(x)~ is a set of several possible values, which is the hesitant fuzzy membership degree. In particular, if F(ϵ)~ has only one element, F(ϵ)~ can be called a hesitant fuzzy soft number. For convenience, a hesitant fuzzy soft number (HFSN) is denoted by {<h,μF(ϵ)(x)~>}.

Example 2.6

Suppose U={a,b} be an initial universe and E={e1,e2,e3,e4} be a set of parameters. Let A={e1,e2}. Then, the hesitant fuzzy soft set FA is given as FA={F(e1)={<a,{0.6,0.8}>,<b,{0.8,0.4,0.9}>},F(e2)={<a,{0.9,0.1,0.5}>,<b,{0.2}>}.

Definition 2.7

Wang, Li, and Chen (Citation2014)   Let F(ei)={<ht,μit>} be hesitant fuzzy soft number, where t=1,2,,m. Then

(F(ei))C={<ht,γitμit{1-γit}>}.

3. Aspect on hesitant fuzzy soft sets

Definition 3.1

Let F(ei)={<ht,μit>} and F(ej)={<ht,μjt>} be two hesitant fuzzy soft numbers with λ>0 and (t=1,2,,m), then

(i)

λF(ei)={<ht,γitμit{(1-(1-γit)λ)}>}.

(ii)

F(ei)λ={<ht,γitμitγitλ}>}.

(iii)

F(ei)~F(ej)={<ht,γitμit,γjtμjt{γit+γjt-γit·γjt}>}.

(iv)

F(ei)~F(ej)={<ht,γitμit,γjtμjt{γit·γjt}>}.

Example 3.2

Let FA={F(e1)={<a,{0.6,0.8}>,<b,{0.8,0.4,0.9}>},F(e2)={<a,{0.9,0.1,0.5}>,<b,{0.2}>} and GB={G(e1)={<a,{0.4,0.2}>,<b,{0.7,0.1}>}}.

Then, we have

(i)

2FA={e1={<a,{0.84,0.96}>,<b,{0.96,0.64,0.99}>},e2={<a,{0.99,0.19,0.75}>,<b,{0.36}>}.

(ii)

(FA)2={e1={<a,{0.36,0.64}>,<b,{0.64,0.16,0.81}>},e2={<a,{0.81,0.01,0.25}>,<b,{0.4}>}.

(iii)

FA~GB={e1={<a,{0.76,0.68,0.88,0.84}>,<b,{0.94,0.82,0.82,0.46,0.97,0.91}>},e2={<a,{0.9,0.1,0.5}>,<b,{0.2}>}.

(iv)

FA~GB={e1={<a,{0.24,0.12,0.32,0.16}>,<b,{0.56,0.08,0.28,0.04,0.63,0.09}>},e2={<a,{0.9,0.1,0.5}>,<b,{0.2}>}.

Proposition 3.3

Let F(ei)={<ht,μit>} and F(ej)={<ht,μjt>} be two hesitant fuzzy soft numbers with λ>0,λ1>0,λ2>0 and (t=1,2,,m), then

(i)

(λF(ei))C=((F(ei))C)λ

(ii)

λ((F(ei))C)=(F(ei)λ)C

(iii)

F(ei)~F(ej)=F(ej)~F(ei)

(iv)

F(ei)~F(ej)=F(ej)~F(ei)

(v)

(F(ei)~F(ej))C=(F(ei))C~(F(ej))C

(vi)

(F(ei)~F(ej))C=(F(ei))C~(F(ej))C

(vii)

λ(F(ei)~F(ej))=λF(ei)~λF(ej)

(viii)

(F(ei)~F(ej))λ=F(ei)λ~F(ej)λ

(ix)

λ1F(ei)~λ2F(ei)=(λ1+λ2)F(ei)

(x)

F(ei)λ1~F(ei)λ2=F(ei)λ1+λ2.

Proof

For t=1,2,,m

(i)

By definition, λF(ei)={<ht,γitμit{(1-(1-γit)λ)}>}. Therefore, (λF(ei))C={<ht,γitμit{(1-(1-(1-γit)λ))}>}={<ht,γitμit{(1-γit)λ}>}={<ht,γitμit{(1-γit)}>}λ={<ht,μitC>}λ=(F(ei)C)λ.

(ii)

By definition, (F(ei))C={<ht,μitC>}={<ht,γitμit{(1-γit)}>}. Therefore, λ(F(ei))C={<ht,γitμit{(1-(1-(1-γit))λ)}>}={<ht,γitμit{(1-γitλ)}>}={<ht,γitμit{(γit)λ}>}C={<ht,μitλ>}C=(F(ei)λ)C.

(iii)

F(ei)~F(ej)={<ht,γitμit,γjtμjt{γit+γjt-γit·γjt}>}={<ht,γjtμjt,γitμit{γjt+γit-γjt·γit}>}=F(ej)~F(ei).

(iv)

Similar as (iii).

(v)

(F(ei)~F(ej))C={<ht,γitμit,γjtμjt{1-(γit+γjt-γit·γjt)}>}={<ht,γitμit,γjtμjt{(1-γit)(1-γjt)}>}={<ht,μitC·μjtC>}=(F(ei))C~(F(ej))C.

(vi)

Similar to (v).

(vii)

(A) λ(F(ei)~F(ej))={<ht,γitμit,γjtμjt{1-(1-γit-γjt+γit·γjt)λ}>}={<ht,γitμit,γjtμjt{1-(1-γit)λ·(1-γjt)λ}>}(A) Again λ(F(ei)={<ht,γitμit{1-(1-γit)λ}>} and λ(F(ej)={<ht,γjtμjt{1-(1-γjt)λ}>}. Therefore, (B) λF(ei)~λF(ej)={<ht,γitμit,γjtμjt{1-(1-γit)λ+1-(1-γjt)λ-(1-(1-γit)λ)(1-(1-γjt)λ)}>}={<ht,γitμit,γjtμjt{1-(1-γit)λ·(1-γjt)λ}>}.(B) From (A) and (B), we get the proved.

(viii)

Since (C) (F(ei)~F(ej))λ={<ht,γitμit,γjtμjt{γitλ·γjtλ}>}(C) and (D) F(ei)λ~F(ej)λ={<ht,γitμitγitλ}>}~{<ht,γjtμjtγjtλ}>}={<ht,γitμit,γjtμjt{γitλ·γjtλ}>}.(D) From (C) and (D), we get the proved.

(ix)

Similar as (viii).

(x)

Similar as (viii).

Definition 3.4

Let F(ei)={<ht,μit>} and F(ej)={<ht,μjt>} be two hesitant fuzzy soft numbers with (t=1,2,,m), then

(i)

F(ei)~F(ej)={<ht,γitμit,γjtμjt{γ}>}, where γ=(γit-γjt)(1-γjt)ifγit>γjtandγjt10otherwise

(ii)

F(ei)~F(ej)={<ht,γitμit,γjtμjt{γ}>}, where γ=γitγjtifγitγjtandγjt01otherwise

Proposition 3.5

Let F(ei)={<ht,μit>} be hesitant fuzzy soft number and (t=1,2,,m), then the following are true:

(i)

F(ei)~F(ei)=ϕ~

(ii)

F(ei)~ϕ~=F(ei)

(iii)

F(ei)~E~=ϕ~

(iv)

F(ei)~F(ei)=E~

(v)

F(ei)~E~=F(ei)

(vi)

F(ei)~ϕ~=E~

(vii)

E~~E~=ϕ~

(viii)

ϕ~~E~=ϕ~

(ix)

E~~ϕ~=E~

(x)

ϕ~~ϕ~=ϕ~

(xi)

E~~E~=E~

(xii)

ϕ~~E~=ϕ~

(xiii)

E~~ϕ~=E~

(xiv)

ϕ~~ϕ~=E~.

Proof

Obvious.

Proposition 3.6

Let F(ei)={<ht,μit>} and F(ej)={<ht,μjt>} be two hesitant fuzzy soft numbers with (t=1,2,,m), then

(i)

(F(ei)~F(ej))~F(ej)=F(ei)    if    γitγjt, γjt1;

(ii)

(F(ei)~F(ej))~F(ej)=F(ei)    if    γitγjt, γjt0.

Proof

 

(i)

(F(ei)~F(ej))~F(ej)=<ht,γitμit,γjtμjt,γitγjt,γjt1γit-γjt1-γjt>~<ht,γjtμjtγjt>=<ht,γitμit,γjtμjt,γitγjt,γjt1γit-γjt1-γjt+γjt-γit-γjt1-γjt·γjt>=<ht,γitμit,γjtμjt,γitγjt,γjt1γit(1-γjt)1-γjt>=<ht,γitμitγit>=F(ei).

(ii)

(F(ei)~F(ej))~F(ej)=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt>~<ht,γjtμjtγjt>=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt·γjt>=<ht,γitμitγit>=F(ei).

Proposition 3.7

Let F(ei)=<ht,μit> and F(ej)=<ht,μjt> be two hesitant fuzzy soft numbers with λ1λ2>0 and (t=1,2,,m), then

(i)

λ(F(ei)~F(ej))=λF(ei)~λF(ej)    if    γitγjt, γjt1

(ii)

(F(ei)~F(ej))λ=F(ei)λ~F(ej)λ    if    γitγjt,γjt0

(iii)

λ1F(ei)~λ2F(ei)=(λ1-λ2)F(ei)    if    γit1

(iv)

F(ei)λ1~F(ei)λ2=F(ei)λ1-λ2    if    γit0.

Proof

 

(i)

(E) λF(ei)~F(ej)=λ<ht,γitμit,γjtμjt,γitγjt,γjt1γit-γjt1-γjt>=<ht,γitμit,γjtμjt,γitγjt,γjt11-1-γit-γjt1-γjtλ>=<ht,γitμit,γjtμjt,γitγjt,γjt1(1-γjt)λ-(1-γit)λ(1-γjt)λ>(E) Again (F) λF(ei)~λF(ej)=<ht,γitμit1-(1-γit)λ>~<ht,γjtμjt1-(1-γjt)λ>=<ht,γitμit,γjtμjt,γitγjt,γjt1(1-(1-γit)λ)-(1-(1-γjt)λ)1-(1-(1-γjt)λ))>(since,γitγjt,γjt1,itfollowsthat(1-(1-γit)λ)(1-(1-γjt)λ).)=<ht,γitμit,γjtμjt,γitγjt,γjt1(1-γjt)λ-(1-γit)λ(1-γjt)λ>(F) From (E) and (F), we get the result.

(ii)

(G) (F(ei)~F(ej))λ=(<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt>)λ=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjtλ>.(G) Again (H) F(ei)λ~F(ej)λ=<ht,γitμitγitλ>~<ht,γjtμjtγjtλ>=<ht,γitμit,γjtμjt,γitγjt,γjt0γitλγjtλ>(since,γitγjt,γjt0,thisimpliesthatγitλγjtλ)=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjtλ>(H) From (G) and (H), we get the result.

(iii)

Same as (i)

(iv)

Same as (ii).

Proposition 3.8

Let F(ei)=<ht,μit>, F(ej)=<ht,μjt> and F(ek)=<ht,μkt> be three hesitant fuzzy soft numbers with (t=1,2,,m), then

(i)

F(ei)~F(ej)~F(ek)=F(ei)~F(ek)~F(ej),ifγitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0,

(ii)

F(ei)~F(ej)~F(ek)=F(ei)~F(ek)~F(ej),ifγitγjt·γkt,γjt0,γkt0

(iii)

F(ei)~F(ej)~F(ek)=F(ei)~(F(ej)~F(ek)),ifγitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0,

(iv)

F(ei)~F(ej)~F(ek)=F(ei)~F(ej)~F(ek),ifγitγjt·γkt,γjt0,γkt0.

Proof

 

(i)

(I) F(ei)~F(ej)~F(ek)=<ht,γitμit,γjtμjt,γitγjt,γjt1γit-γjt1-γjt>~<ht,γktμkt,γkt1γkt>=<ht,γitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0γit-γjt1-γjt-γkt1-γkt>(since,γit-γjt-γkt+γjt·γkt0,andγit-γjt1-γjtγkt)=<ht,γitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0γit-γjt-γkt+γjt·γkt(1-γjt)(1-γkt)>.(I) Again (J) F(ei)~F(ek)~F(ej)=<ht,γitμit,γktμkt,γitγkt,γkt1γit-γkt1-γkt>~<ht,γjtμjt,γjt1γjt>=<ht,γitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0γit-γkt1-γkt-γjt1-γjt>(since,γit-γjt-γkt+γjt·γkt0,andγit-γkt1-γktγjt)=<ht,γitγjt,γitγkt,γjt1,γkt1,γit-γjt-γkt+γjt·γkt0γit-γjt-γkt+γjt·γkt(1-γjt)(1-γkt)>.(J) From (I) and (J), we get the result.

(ii)

(K) F(ei)~F(ej)~F(ek)=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt>~<ht,γktμkt,γkt0γkt>=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjtγkt>(since,γitγjt·γkt,γjt0,thisimpliesthatγitγjt·γktγjt,andγitγjtγkt)=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt·γkt>.(K) Again (L) F(ei)~F(ek)~F(ej)=<ht,γitμit,γktμkt,γitγkt,γkt0γitγkt>~<ht,γjtμjt,γjt0γjt>=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγktγjt>(since,γitγjt·γkt,γkt0,thisimpliesthatγitγjt·γktγkt,andγitγktγjt)=<ht,γitμit,γjtμjt,γitγjt,γjt0γitγjt·γkt>(L) From (K) and (L), we get the result.

(iii)

Obvious.

(iv)

Obvious.

Proposition 3.9

Let F(ei)=<ht,μit> and F(ej)=<ht,μjt> be two hesitant fuzzy soft numbers with (t=1,2,,m), then

(i)

(F(ei))C~(F(ej))C=(F(ei)~F(ej))C

(ii)

(F(ei))C~(F(ej))C=(F(ei)~F(ej))C.

Proof

 

(i)

(F(ei))C~(F(ej))C=<ht,γitμit(1-γit)>~<ht,γjtμjt(1-γjt)>=<ht,γitμit,γjtμjt,γitγjt,γjt0(1-γit)-(1-γjt)1-(1-γjt)>=<ht,γitμit,γjtμjt,γitγjt,γjt01-γitγjt>=(F(ei)~F(ej))C.

(ii)

(F(ei))C~(F(ej))C=<ht,γitμit(1-γit)>~<ht,γjtμjt(1-γjt)>=<ht,γitμit,γjtμjt,γitγjt,γjt11-γit1-γjt>=<ht,γitμit,γjtμjt,γitγjt,γjt11-γit-γjt1-γjt>=(F(ei)~F(ej))C.

Additional information

Funding

The authors received no direct funding for this research.

Notes on contributors

Manash Jyoti Borah

Manash Jyoti Borah received his MSc degree from Dibrugarh University, and, currently, he is an assistant professor at the Department of Mathematics, Bahona College, Jorhat, Assam, India. Presently, he is a PhD scholar at Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India. His research interests are soft sets, fuzzy sets, soft topology, and applications of soft sets. He has published few research papers in this area in reputed national and international journals.

Bipan Hazarika

Bipan Hazarika received his PhD degree from Gauhati University, Guwahati, Assam, India. Presently, he is an associate professor at the Department of Mathematics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India. He has published more than 80 research papers in reputed national and international journals.

References

  • Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Systems, 20, 87–96.
  • Babitha, K. V., & Johan, S. J. (2013). Hesitant fuzzy soft sets. Journal of New Results in Science, 3, 98–107.
  • Broumi, S., & Smarandache, F. (2014). New operations over interval valued intuitionistic hesitant fuzzy set. Mathematics and Statistics, 2, 62–71.
  • \c{C}a\v{g}man, N., & Engino\v{g}lu, N. S. (2010). Soft set theory and uni-int decision making. European Journal of Operational Research, 207, 848–855.
  • Liao, H. C., & Xu, Z. S. (2014). Subtraction and divison operations over hesitant fuzzy sets. Journal of Intelligent & Fuzzy Systems, 27, 65–72.
  • Maji, P. K., Biswas, R., & Roy, R. (2002). An application of soft sets in a decision making problem. Computers & Mathematics with Applications, 44, 1077–1083.
  • Maji, P. K., Biswas, R., & Roy, R. (2003). Soft set theory. Computers & Mathematics with Applications, 45, 555–562.
  • Maji, P. K., Biswas, R., & Roy, A. R. (2001). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 589–602.
  • Molodstov, D. A. (1999). Soft set theory-first result. Computers & Mathematics with Applications, 37, 19–31.
  • Molodtsov, D. A., Leonov, V. Y., & Kovkov, D. V. (2006). Soft sets technique and its application. Nechetkie Sistemy i Myagkie Vychisleniya, 1, 8–39.
  • Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25, 529–539.
  • Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. In proceeding of the 18th IEEE international conference on fuzzy systems (pp. 1378-1382). Jeju Island, Republic of Korea.
  • Verma, R., & Sharma, B. D. (2013). New operations over hesitant fuzzy sets. Fuzzy Information and Engineering, 2, 129–146.
  • Wang, J., Li, X., & Chen, X. (2015). Hesitant fuzzy soft sets with application in multicrteria group decision making problems. The Scientific World Journal, 2014, 1–14.
  • Xu, Z., & Xia, M. (2011). Distance and similrity measures for hesitant fuzzy sets. Information Sciences, 181, 2128–2138.
  • Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52, 395–407.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.