554
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Modified (p,q)-Bernstein-Schurer operators and their approximation properties

, & | (Reviewing Editor)
Article: 1236534 | Received 08 Jul 2016, Accepted 07 Sep 2016, Published online: 03 Oct 2016

Abstract

In this paper, we introduce modified (pq)-Bernstein–Schurer operators and discuss their statistical approximation properties based on Korovkins type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.

AMS Subject Classifications:

Public Interest Statement

In this paper, we have modified the (pq)-Bernstein–Schurer operators and discussed their statistical approximation properties based on Korovkins type approximation theorem. We have also established the rate of convergence of these operators using the modulus of continuity. Furthermore, we have proved a Voronovskaja-type theorem. One of its advantages of using the extra parameter p has been mentioned in Mursaleen, Faisal Khan and Asif Khan (Citation2016) to study (pq)-approximation by Lorentz operators in compact disk. Another nice application has been given by Khan, Lobiyal and Kilicman (Citation2015) and Khan and Lobiyal (Citation2015) in computer-aided geometric design and applied these Bernstein bases for construction of (pq)-Bézier curves and surfaces based on (pq)-integers.

1. Introduction and preliminaries

In Lupaş (Citation1987) introduced the first q-analogue of the classical Bernstein operators and investigated its approximating and shape-preserving properties. Another q-generalization of the classical Bernstein polynomial is due to Phillips (Citation1997). Several generalizations of well-known positive linear operators based on q-integers were introduced and their approximation properties have been studied by several researchers.

Recently, Mursaleen et al. introduced (pq)-calculus in approximation theory and constructed the (pq)-analogue of Bernstein operators Mursaleen, Ansari, and Khan (Citation2015a) and (pq)-analogue of Bernstein–Stancu operators (Mursaleen, Ansari, & Khan, Citation2015b). Most recently, the (pq)-analogue of some more operators has been studied in Acar (Citation2010), Acar, Aral, and Mohiuddine (Citation2016a,Citation2016b), Cai and Zhou (Citation2016), Mursaleen, Alotaibi, and Ansari (Citation2016), Mursaleen and Nasiruzzaman (Citation2016), Mursaleen, Nasiuzzaman, and Nurgali (Citation2015) and Mursaleen and Nasiruzzaman (Citation2015). One of its advantages of using the extra parameter p has been mentioned in Mursaleen, Khan, and Khan (Citation2016) to study (pq)-approximation by Lorentz operators in compact disk. Another nice application has been given by Khan et al. (Citation2015) and Khan and Lobiyal (Citation2015) in computer-aided geometric design and applied these Bernstein bases for construction of (pq)-Bézier curves and surfaces based on (pq)-integers.

The (pq)-integer was introduced to generalize or unify several forms of q-oscillator algebras well known in the Physics literature related to the representation theory of single-parameter quantum algebras. The (pq)-integer is defined by(1.1) np,q=pn-2+qpn-3++qn-2=pn-qnp-q(pq1)1-qn1-q(p=1)n(p=q=1)(1.1)

where 0<q<p1.

The (pq)-binomial expansion is(ax+by)p,qn:=k=0np(n-k)(n-k-1)2qk(k-1)2nkp,qan-kbkxn-kyk,(x+y)p,qn:=(x+y)(px+qy)(p2x+q2y)(pn-1x+qn-1y),(1-x)p,qn:=(1-x)(p-qx)(p2-q2x)(pn-1-qn-1x).

The (pq)-binomial coefficients are defined bynkp,q:=[n]p,q![k]p,q![n-k]p,q!.

In Schurer (Citation1962) introduced and studied the operators Cm,d:C[0,d+1]CC[0,1]) defined for any mN and d be fixed in N and any function fC[0,d+1] as follows:(1.2) Cm,d(f;x)=k=0m+dm+dkxk(1-x)m+d-kfkm,x[0,1].(1.2)

In Muraru (Citation2011) constructed the q-Bernstein–Schurer operators defined by(1.3) B~n,p(f;q;x)=k=0n+pn+pkqxks=0n+p-k-1(1-qsx)f[k]q[n]q,x[0,1].(1.3)

Mursaleen et al. (Citation2015) introduced the generalized (pq)-analogue of Bernstein–Schurer operators as follows:(1.4) Sn,p,q(f;x)=1p(n+)(n+-1)2k=0n+n+kp,qpk(k-1)2xks=0n+-k-1(ps-qsx)f[k]p,qpk-n-[n]p,q(1.4) x[0,1].

2. Construction of operators

We consider 0<q<p1 and for any mN,fC[0,d+1], d is fixed and dN{0}. We define the modified (pq)-Bernstein–Schurer operators for x[0,1] as follows: Lm,dp,q(f;x)=(2.1) 1p(m+d)(m+d-1)2k=0m+dm+dkp,q(rm,d(p,q;x))p,qks=0m+d-k-1(ps-qsrm,d(p,q;x))f[k]p,qpk-m-d[m]p,q.(2.1)

where rm,d(p,q;x)=[m]p,qx[m+d]p,q. In case of p=1, the operators turn out the modified q-Schurer operators defined in Mursaleen et al. (mnn) and if we replace rm,d(q;x) by x, then we get (1.3). Moreover, if we take d=0 and rm,d(p,q;x)=x, we get (pq)-Bernstein operators defined in Mursaleen et al. (Citation2015a).

Lemma 2.1

Let Lm,dp,q(f;x) be the operators defined by (2.1). Then, for any function fC[0,d+1], dN{0},x[0,1], we have

(i)

Lm,dp,q(1;x)=1,

(ii)

Lm,dp,q(t;x)=x,

(iii)

Lm,dp,q(t2;x)=[m+d]p,q[m]p,q2[m+d]p,qrm,d2(p,q;x)+pm+d-1rm,d(p,q;x)1-rm,d(p,q;x),

(iv)

Lm,dp,q(t3;x)=p2(m+d-1)[m+d]p,q[m]p,q3rm,d(p,q;x)+2pm+d-1q+pm+d-2q2[m]p,q3[m+d]p,q[m+d-1]p,qrm,d2(p,q;x)+q3[m]p,q3[m+d]p,q[m+d-1]p,q[m+d-2]p,qrm,d3(p,q;x)form+d2,

(v)

Lm,dp,q(t4;x)=p3(m+d-1)[m+d]p,q[m]p,q4rm,d(p,q;x)+3p2(m+d-1)q+3p2m+2d-3q2+pm+d-2q3[m]p,q4[m+d]p,q[m+d-1]p,qrm,d2(p,q;x)+3pm+d-1q3+2pm+d-2q4+pm+d-3q5[m]p,q4[m+d]p,q[m+d-1]p,q[m+d-2]p,qrm,d3(p,q;x)+q6[m]p,q4[m+d]p,q[m+d-1]p,q[m+d-2]p,q[m+d-3]p,qrm,d4(p,q;x)form+d3.

Proof

 

(i)

For 0<q<p1, we use the known identity from Mursaleen et al. (Citation2015a) k=0mmkp,q(rm,d(p,q;x))p,qks=0m-k-1(ps-qsrm,d(p,q;x))=p(m)(m-1)2. We have (1-(rm,d(p,q;x))p,qm+d-k=s=0m+d-k-1(ps-qsrm,d(p,q;x)), and k=0m+dm+dkp,q(rm,d(p,q;x))p,qks=0m+d-k-1(ps-qsrm,d(p,q;x))=p(m+d)(m+d-1)2, Consequently, we have Lm,dp,q(1;x)=1.

(ii)

Using (rm,d(p,q;x))p,qk+1=pk[m]p,q[m+d]p,qx(rm,d(p,q;x))p,qk, we have Lm,dp,q(t;x)=1p(m+d)(m+d-1)2k=0m+dm+dkp,q(rm,d(p,q;x))p,qks=0m+d-k-1(ps-qsrm,d(p,q;x))[k]p,qpk-m-d[m]p,q=[m+d]p,qp(m+d)(m+d-1)2-m-dk=0m+d-1m+d-1kp,q[m]p,qx[m+d]p,qp,qk+1s=0m+d-k-2ps-qs[m]p,qx[m+d]p,q1pk+1[m]p,q=pk[m]p,q[m+d]p,qxpkp(m+d)(m+d-1)2-m-d+1[m]p,q[m+d]p,qk=0m+d-1m+d-1kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-2ps-qs[m]p,qx[m+d]p,q=x.

(iii)

Using (rm,d(p,q;x))p,qk+2=pk+1[m]p,q[m+d]p,qx(rm,d(p,q;x))p,qk+1, [k+1]p,q=pk+q[k]p,q and q[m+d-1]p,q=[m+d]p,q-pm+d-1, we have Lm,dp,q(t2;x)=1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,q2p2k-2m-2d[m]p,q2=1p(m+d)(m+d-1)2-2m-2d[m+d]p,q[m]p,q2k=1m+d-1m+d-1k-1p,q1p2k[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,q=1p(m+d)(m+d-1)2-2m-2d+2[m+d]p,q[m]p,q2k=0m+d-1m+d-1kp,q1pk[m]p,qx[m+d]p,q[m]p,qx[m+d]p,qp,qks=0m+d-k-2ps-qs[m]p,qx[m+d]p,qpk+q[k]p,q=1p(m+d)(m+d-1)2-2m-2d+2x[m]p,qk=0m+d-1m+d-1kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-2ps-qs[m]p,qx[m+d]p,q+1p(m+d)(m+d-1)2-2m-2d+2q[m+d-1]p,qx[m]p,qk=0m+d-2m+d-2kp,q1pk+1[m]p,qx[m+d]p,qp,qk+1s=0m+d-k-3ps-qs[m]p,qx[m+d]p,q=1p(m+d)(m+d-1)2-2m-2d+2p(m+d-1)(m+d-2)2x[m]p,q+1p(m+d-2)(m+d-3)2q[m+d-1]p,qx2[m+d]p,qk=0m+d-2m+d-2kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-3ps-qs[m]p,qx[m+d]p,q=pm+d-1x[m]p,q+q[m+d-1]p,q[m+d]p,qx2=pm+d-1x[m]p,q+[m+d]p,q-pm+d-1[m+d]p,qx2=pm+d-1[m+d]p,q[m]p,q2rm,d(p,q;x)+x2-pm+d-1[m+d]p,q[m]p,q2rm,d2(p,q;x)=x2+pm+d-1[m+d]p,q[m]p,q2rm,d(p,q;x)1-rm,d(p,q;x))=[m+d]p,q[m]p,q2[m+d]p,qrm,d2(p,q;x)+pm+d-1rm,d(p,q;x)1-rm,d(p,q;x).

(iv)

we have Lm,dp,q(t3;x)=1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,q3p3k-3m-3d[m]p,q3=1p(m+d)(m+d-1)2-3m-3d+3xk=0m+d-1m+d-1kp,q([m]p,qx[m+d]p,q)p,qks=0m+d-k-2ps-qs[m]p,qx[m+d]p,q(p2k+2pkq[k]p,q+q2[k]p,q2)p2k[m]p,q2=p2(m+d-1)[m]p,q2x+2pm+d-1q+pm+d-2q2[m]p,q[m+d]p,q[m+d-1]p,qx2+q3[m+d]p,q2[m+d-1]p,q[m+d-2]p,qx3=p2(m+d-1)[m+d]p,q[m]p,q3rm,d(p,q;x)+2pm+d-1q+pm+d-2q2[m]p,q3[m+d]p,q[m+d-1]p,qrm,d2(p,q;x)+q3[m]p,q3[m+d]p,q[m+d-1]p,q[m+d-2]p,qrm,d3(p,q;x).

(v)

we have Lm,dp,q(t4;x)=1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,q4p4k-4m-4d[m]p,q4=1p(m+d)(m+d-1)2-4m-4d+4xk=0m+d-1m+d-1kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-2ps-qs[m]p,qx[m+d]p,q(p3k+3p2kq[k]p,q+3pkq2[k]p,q2+q3[k]p,q3)p3k[m]p,q3=p3(m+d-1)[m]p,q3x+3p2(m+d-1)q[m]p,q2[m+d]p,q[m+d-1]p,qx2+3q2[m+d-1]p,qp(m+d)(m+d-1)2-4m-4d+4x2k=0m+d-2m+d-2kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-3ps-qs[m]p,qx[m+d]p,q(pk+q[k]p,q)pk+2[m]p,q2[m+d]p,q+q3[m+d-1]p,qp(m+d)(m+d-1)2-4m-4d+4x2k=0m+d-2m+d-2kp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-3ps-qs[m]p,qx[m+d]p,q(p2k+2pkq[k]p,q+q2[k]p,q2)p2k+3[m]p,q2[m+d]p,q=p3(m+d-1)[m]p,q3x+3p2(m+d-1)q+3p2m+2d-3q2+pm+d-2q3[m]p,q2[m+d]p,q[m+d-1]p,qx2+3pm+d-1q3+2pm+d-2q4+pm+d-3q5[m]p,q[m+d]p,q2[m+d-1]p,q[m+d-2]p,qx3+q6[m+d]p,q3[m+d-1]p,q[m+d-2]p,q[m+d-3]p,qx4=p3(m+d-1)[m+d]p,q[m]p,q4rm,d(p,q;x)+3p2(m+d-1)q+3p2m+2d-3q2+pm+d-2q3[m]p,q4[m+d]p,q[m+d-1]p,qrm,d2(p,q;x)+3pm+d-1q3+2pm+d-2q4+pm+d-3q5[m]p,q4[m+d]p,q[m+d-1]p,q[m+d-2]p,qrm,d3(p,q;x)+q6[m]p,q4[m+d]p,q[m+d-1]p,q[m+d-2]p,q[m+d-3]p,qrm,d4(p,q;x).

Lemma 2.2

Let 0<q<p1, and for any mN, we have

(i)

Lm,dp,q(t-x;x)=0,

(ii)

Lm,dp,q((t-x)2;x)=pm+d-1[m]p,qx1-[m]p,qx[m+d]p,qpm+d-1[m]p,q1-[m]p,qx[m+d]p,q,

(iii)

Lm,dp,q((t-x)3;x)=Lm,dp,q(t3;x)-3xLm,dp,q(t2;x)+3x2Lm,dp,q(t;x)-x3=p2(m+d-1)[m]p,q2x-3pm+d-1[m]p,q-2pm+d-1q+pm+d-2q2[m]p,q[m+d]p,q[m+d-1]p,qx2+q3[m+d]p,q2[m+d-1]p,q[m+d-2]p,q-3q[m+d-1]p,q[m+d]p,q+2x3,

(iv)

Lm,dp,q((t-x)4;x)=Lm,dp,q(t4;x)-4xLm,dp,q(t3;x)+6x2Lm,dp,q(t2;x)-4x3Lm,dp,q(t;x)+x4=p3(m+d-1)[m]p,q3x-4p2(m+d-1)[m]p,q2x2+3p2(m+d-1)q+3p2m+2d-3q2+pm+d-2q3[m]p,q2[m+d]p,q[m+d-1]p,qx2+6p(m+d-1)[m]p,qx3-(8pm+d-1q+4pm+d-2q2)[m]p,q[m+d]p,q[m+d-1]p,qx3+3pm+d-1q3+2pm+d-2q4+pm+d-3q5[m]p,q[m+d]p,q2[m+d-1]p,q[m+d-2]p,qx3+6q[m+d-1]p,q[m+d]p,qx4-4q3[m+d]p,q2[m+d-1]p,q[m+d-2]p,qx4+q6[m+d]p,q3[m+d-1]p,q[m+d-2]p,q[m+d-3]p,qx4.

3. Statistical approximation

First, we recall the concept of statistical convergence for sequences of real numbers which were introduced by Fast (Citation1951) and further studied by many others. Let KN and Kn={jn:jK}. The natural density of K is defined by δ(K)=limn1n|Kn| if the limit exists, where |Kn| denotes the cardinality of the set Kn. A sequence x=(xk) of real numbers is said to be statistically convergent to L, provided that for every ε>0, the set {jN:|xj-L|ε} has natural density zero, that is for each ε>0,limn1n|{jn:|xj-L|ε}|=0.

In this case, we write st-limnxn=L. Note that every convergent sequence is statistically convergent but not conversely. For example, let u=(um) be defined byum=1ifkisasquare,0otherwise.

then, st-limum=0, but u is not convergent. Recently, the idea of statistical convergence has been used in proving some approximation theorems by various authors and it was found that the statistical versions are stronger than the classical ones. Authors have used many types of classical operators and test functions to study the Korovkin-type approximation theorems which further motivate continuation of this study. After the paper of Gadjiev and Orhan (Citation2002), different types of summability methods have been deployed in approximation process, for example, Mursaleen, Khan, Srivastava, and Nisar (Citation2013), Mursaleen and Kilicman (Citation2013). In this section, we obtain the Korovkin-type weighted statistical approximation properties for these operators.

Let CB[0,d+1] be the space of all bounded and continuous functions on [0,d+1]. Then, CB[0,d+1] is a normed linear space with f=supx0|f(x)|. Let ω denote the modulus of continuity which has the following properties:

(i)

ω is a non-negative increasing function on [0,d+1],

(ii)

ω(δ1+δ2)ω(δ1)+ω(δ1),

(iii)

limδω(δ)=0.

Let CB[0,d+1] be the space of all real-valued functions f defined on [0,d+1], satisfying the following condition:|f(x)-f(y)|ω(|x-y|),

for any x,y[0,d+1]. For q(0,1) and p(q,1] it is obvious that limm[m]p,q=1p-q. In order to reach to convergent result of the operator Lm,dp,q, we take a sequence qm(0,1), pm(q,1] such that(3.1) limmqm=1,limmpm=1(3.1) (3.2) limmqmm=b,limmpmm=a,(0<a,b1).(3.2)

Theorem 3.1

Let Lm,dp,q be the sequence of the operators (2.1) and the sequences q=qm , p=pm satisfy (3.1) and (3.2) and limm[m]pm,qm=. Then, for any function fCB[0,d+1],st-limmLm,dpm,qm(f;·)-f=0.

Proof

Let ej=tj, where j=0,1,2. Since Lm,dpm,qm(1;x)=pmqm, we can writest-limmLm,dpm,qm(1;x)-1=st-limme0|pmqm-1|

asLm,dpm,qm(1;x)-1e0|pmqm-1||pmqm-1|,

By condition (3.1), it can be observed thatst-limmLm,dpm,qm(1;x)-1=0.

Similarly, since Lm,dpm,qm(t;x)=pmqmx, we can writest-limmLm,dpm,qm(t;x)-x=st-limme1|pmqm-1|

asLm,dpm,qm(t;x)-xe1|pmqm-1||pmqm-1|,

By condition (3.1), it can be observed thatst-limmLm,dpm,qm(t;x)-x=0.

Lastly, we haveLm,dpm,qm(t2;x)-x2=e1|pmm+d-1[m]pm,qm|+e2|qm[m+d-1]pm,qm[m+d]pm,qm-1||pmm+d-1[m]pm,qm|.

Now for a given ε>0, let us define the following setsU={k:Lm,dpm,qm(t2;x)-x2ε},U1={k:pkm+d-1[m]pk,qkε},

It is obvious that UU1. Then, we obtain δ{km:Lm,dpm,qm(t2;x)-x2ε}δ{km:pkm+d-1[m]pk,qkε}.

By conditions (3.1) and (3.2), we havest-limmpmm+d-1[m]pm,qm=0

So we havest-limmLm,dpm,qm(t2;x)-x2=0.

SinceLm,dpm,qm(f;x)-fLm,dpm,qm(t2;x)-x2+Lm,dpm,qm(t;x)-x+Lm,dpm,qm(1;x)-1,

we getst-limmLm,dpm,qm(f;x)-fst-limmLm,dpm,qm(t2;x)-x2+st-limmLm,dpm,qm(t;x)-x+st-limmLm,dpm,qm(1;x)-1,

which implies thatst-limmLm,dpm,qm(f;x)-f=0.

This completes the proof of the theorem.

4. Rates of convergence

We will estimate the rate of convergence in terms of modulus of continuity. Let fC[0,b], and the modulus of continuity of f denoted by ω(f,δ) gives the maximum oscillation of f in any interval of length not exceeding δ>0 and it is given by the relationω(f,δ)=sup|y-x|δ|f(y)-f(x)|,x,y[0,b].

It is known that limδ0+ω(f,δ)=0 for fC[0,b] and for any δ>0, one has(4.1) |f(y)-f(x)||y-x|δ+1ω(f,δ).(4.1)

Theorem 4.1

If fC[0,d+1], then|Lm,dp,q(f;x)-f(x)|2ωf(δm),

whereδm=pm+d-1[m]p,q1-[m]p,qx[m+d]p,q.

Proof

|Lm,dp,q(f;x)-f(x)|1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,qf[k]p,qpk-m-d[m]p,q-f(x)1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,qpk-m-d[m]p,q-xδ+1ω(f,δ).

Using the Cauchy inequality and lemma (2.1), we have|Lm,dp,q(f;x)-f(x)|1+1δ1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qk[k]p,q[m]p,qpk-m-d-x2s=0m+d-k-1ps-qs[m]p,qx[m+d]p,q12Lm,dp,q(e0;x)12ω(f,δ)=1δLm,dp,q(e2;x)-2xLm,dp,q(e1;x)+x2Lm,dp,q(e0;x)12+1ω(f,δ)=1δpm+d-1[m]p,qx1-[m]p,qx[m+d]p,q12+1ω(f,δ)1δpm+d-1[m]p,q1-[m]p,qx[m+d]p,q12+1ω(f,δ).

Choosingδ=δm=pm+d-1[m]p,q1-[m]p,qx[m+d]p,q.

as limδ0+ when m, we obtain the desired result.

The Peetre’s K-functional is defined byK2(f,δ)=inff-g+δg:gW2,

whereW2=g,g,gC[0,d+1].

Then, there exists a positive constant C>0 such that K2(f,δ)Cω2f,δ12,δ>0, where the second-order modulus of continuity is given byω2(f,δ12)=sup0<h<δ12supx[0,d+1]|f(x+2h)-2f(x+h)+f(x)|.

Theorem 4.2

Let fC[0,d+1],gC[0,d+1] and 0<q<p1. Then, for all nN, there exists a constant C>0 such thatLm,dp,q(f;x)-f(x)-xg(x)1-[m]p,q[m+d]p,qCω2(f,δm(x)),

whereδm2(x)=pm+d-1[m]p,q1-[m]p,qx[m+d]p,q

Proof

Let gW2. Then, from Taylor’s expansion, we getg(t)=g(x)+g(x)(t-x)+xt(t-u)g(u)du,t[0,A],A>0.

Now by lemma (2.2), we haveLm,dp,q(g;x)=g(x)+xg(x)1-[m]p,q[m+d]p,q+Lm,dp,qxt(e1-u)g(u)du;p,q;xLm,dp,q(g;x)-g(x)-xg(x)1-[m]p,q[m+p]p,qLm,dp,qxt|(t-u)||g(u)|du;p,q;xLm,dp,q(t-x)2;p,q;xg

Hence, we getLm,dp,q(g;x)-g(x)-xg(x)1-[m]p,q[m+d]p,qgpm+d-1[m]p,q1-[m]p,qx[m+d]p,q.

On the other hand, we haveLm,dp,q(f;x)-f(x)-xg(x)1-[m]p,q[m+d]p,q|Lm,dp,q(f-g);x-(f-g)(x)|+Lm,dp,q(g;x)-g(x)-xg(x)1-[m]p,q[m+d]p,q.

Since|Lm,dp,q(f;x)|f,

we haveLm,dp,q(f;x)-f(x)-xg(x)1-[m]p,q[m+d]p,qf-g+gpm+d-1[m]p,q1-[m]p,qx[m+d]p,q.

Now taking the infimum on the right-hand side over all gW2, we getLm,dp,q(f;x)-f(x)-xg(x)1-[m]p,q[m+d]p,qCK2f,δm2(x).

In the view of the property of K-functional, we getLm,dp,q(f;x)-f(x)-xg(x)1-[m]p,q[m+d]p,qCω2f,δm(x).

This completes the proof.

Now we give the rate of convergence of the operators Lm,dpm,qm(f;x) in terms of the elements of the usual Lipschitz class LipM(γ).

Let fC[0,m+d], M>0 and 0<γ1. We recall that f belongs to the class LipM(γ) if the inequality|f(t)-f(x)|M|t-x|γ(t,x(0,1])

is satisfied.

Theorem 4.3

Let 0<q<p1. Then, for each fLipM(γ), we have|Lm,dp,q(f;x)-f(x)|Mδmγ(x)

whereδm2(x)=pm+d-1[m]p,q1-[m]p,qx[m+d]p,q

Proof

By the monotonicity of the operators Lm,dp,q(f;x), we can write|Lm,dp,q(f;x)-f(x)|Lm,p,q|f(t)-f(x)|;p,q;x1p(m+d)(m+d-1)2k=0m+dm+dkp,q(rm,d(p,q;x))p,qks=0m+d-k-1ps-qsrm,d(p,q;x)f[k]p,qpk-m-d[m]p,q-f(x)M1p(m+d)(m+d-1)2k=0m+dm+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q[k]p,qpk-m-d[m]p,q-xγ=Mk=0m+d1p(m+d)(m+d-1)2Pm,d,k(x)[k]p,qpk-m-d[m]p,q-x2γ21p(m+d)(m+d-1)2Pm,d,k(x)2-γ2,

where Pm,d,k(x)=m+dkp,q[m]p,qx[m+d]p,qp,qks=0m+d-k-1ps-qs[m]p,qx[m+d]p,q

Now applying the Hölder’s inequality|Lm,dp,q(f;x)-f(x)|M1p(m+d)(m+d-1)2k=0m+dPm,d,k(x)[k]p,qpk-m-d[m]p,q-x2γ21p(m+d)(m+d-1)2k=0m+dPm,d,k(x)2-γ2=MLm,dp,q(t-x)2;xγ2

Choosing δ:δm(x)=Lm,dp,q(t-x)2;x,

we obtain|Lm,dp,q(f;x)-f(x)|Mδmγ(x).

Hence, the desired result is obtained.

5. Voronovskaja-type theorem

Theorem 5.1

Let fC[0,d+1] be such that f,fC[0,d+1]. Let the sequences {pm}, {qm} satisfy 0<qm<pm1 such that pm1,qm1 and pmma,qmmb as m, where 0a,b<1. Suppose that limm[m]pm,qm=. Thenlimm[m]pm,qmLm,dpm,qm(f;x)-f(x)=x(λ-ax)2f(x),

uniformly on [0,d+1], where 0<λ1.

Proof

By Taylor’s formula, we may writef(t)=f(x)+f(x)(t-x)+12f(x)(t-x)2+r(t,x)(t-x)2

where r(tx) is the remainder term and limtxr(t,x)=0. Therefore, we have[m]pm,qmLm,dpm,qm(f;x)-f(x)=[m]pm,qmf(x)Lm,dpm,qm(t-x);x+f(x)2Lm,dpm,qm(t-x)2;x+Lm,dpm,qm(r(t,x)(t-x)2;x).

By the Cauchy–Schwartz inequality, we have(5.1) Lm,dpm,qmr(t,x)(t-x)2;x)Lm,dpm,qmr2(t,x);x)·Lm,dpm,qm(t-x)4;x).(5.1)

Observe that r2(x,x)=0, and r2(t,x)C[0,d+1]; then, it follows from Theorem 3.1 that(5.2) Lm,dpm,qmr2(t,x);x)=r2(x,x)=0,(5.2)

uniformly with respect to xC[0,d+1], in view of the fact that Lm,dpm,qm(t-x)4;x)=o1[m]pm,qm2. Now from (5.1), (5.2) and Lemma 2.2 (ii), we get(5.3) Lm,dpm,qmr(t,x)(t-x)2;x)=0(5.3)

Now we compute the following:(5.4) limm[m]pm,qmLm,dpm,qm(t-x);x)=0,limm[m]pm,qmLm,dpm,qm(t-x)2;x)=xlimm[m]pm,qm1[m]pm,qmpmm+d-11-[m]p,qx[m+d]p,qlimm[m]pm,qmLm,dpm,qm(t-x)2;x)=λx-ax2=x(λ-ax).(5.4)

where λ(0,1] depending on the sequence {pm}.

Finally, from (5.3), (5.4) and (5.5), we get the required result. This completes the proof of the theorem.

Additional information

Funding

The authors received no direct funding for this research.

Notes on contributors

M. Mursaleen

The first author is the PhD supervisor of other two co-authors. Presently, we have two groups of students working on different topics, e.g. sequence spaces, measures of non-compactness, approximation theory, differential and integral equations. One of the groups is working on approximation of positive linear operators, their q- and (p, q)-generalizations. Presently, the first author is a full-professor and chairman of the Department of Mathematics. Recently, he has received the award of Outstanding Researcher of the Year-2014 of Aligarh Muslim University.

References

  • Acar, T. (2016). (p, q)-generalization of Sz{\’a}sz-Mirakyan operators. Mathematical Methods in the Applied Sciences, 39, 2685–2695.
  • Acar, T., Aral, A., & Mohiuddine, S. A. (2016a). On Kantorovich modifications of (p, q)-Baskakov operators. Journal of Inequalities and Applications, 2016, 98.
  • Acar, T., Aral, A., & Mohiuddine, S. A. (2016b). Approximation by bivariate (p, q)-Bernstein-Kantorovich operators. Iranian Journal of Science and Technology, Transaction A: Science. doi:10.1007/s40995-016-0045-4
  • Cai, Q.-B., & Zhou, G. (2016). On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Applied Mathematics and Computation, 276, 12–20.
  • Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicum, 2, 241–244.
  • Gadzhiev, A. D., & Orhan, C. (2002). Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics, 32, 129–138.
  • Khan, K., & Lobiyal, D. K. (2015). Bézier curves based on Lupas (p, q)-analogue of Bernstein polynomials in CAGD, (arXiv:1505.01810)
  • Khan, K., Lobiyal, D. K., & Kilicman, A. (2015). A de casteljau algorithm for Bernstein type polynomials based on (p, q)-integers. (arXiv 1507.04110)
  • Lupaş, A. (1987). A q-analogue of the Bernstein operator. University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 9, 85–92.
  • Muraru, C. V. (2011). Note on q-Bernstein-Schurer operators. Studia Universitatis Babeş-Bolyai Math., 56, 489–495.
  • Mursaleen, M., Alotaibi, A., & Ansari, K. J. (2016). On a Kantorovich variant of (p, q)-Szász-Mirakjan operators. Journal of Function Spaces, 2016, 9. Article ID 1035253
  • Mursaleen, M., Ansari, K. J., & Khan, A. (2015a). On (p, q)-analogue of Bernstein operators. Applied Mathematics and Computation, 266, 874–882. [ Erratum (2016) Applied Mathematics and Computation, 269, 70–71]
  • Mursaleen, M., Ansari, K.J., & Khan, A. (2015b). Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Applied Mathematics and Computation, 264, 392–402. [ Corrigendum (2015) Applied Mathematics and Computation 269, 744–746].
  • Mursaleen, M., Khan, F. & Khan, A. (2016). Approximation by (p, q) -Lorentz polynomials on a compact disk. Complex Analysis and Operator Theory, doi:10.1007/s11785-016-0553-4
  • Mursaleen, M., Khan, A., Srivastava, H. M., & Nisar, K. S. (2013). Operators constructed by means of q-Lagrange polynomials and A -statistical approximation. Applied Mathematics and Computation, 219, 6911–6918.
  • Mursaleen, M., & Kilicman, A. (2013). Korovkin second theorem via B-statistical A-summability. Abstract and Applied Analysis, 2013, 6, Article ID 598963.
  • Mursaleen, M., & Nasiruzzaman, Md (2015). Some approximation results of bivariate Bleimann-Butzer-Hahn operators defined by (p, q)-integers. Bollettino dell’Unione Matematica Italian, doi:10.1007/s40574-016-0080-
  • Mursaleen, M., & Nasiruzzaman, Md (2016). Asif Khan, Khursheed J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by (p, q)-integers. Filomat, 30, 639–648.
  • Mursaleen, M., Nasiuzzaman, Md, & Nurgali, A. (2015). Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers. Journal of Inequalities and Applications, 2015, 249.
  • Phillips, G. M. (1997). Bernstein polynomials based on the q -integers, The Heritage of P. L. Chebyshev. Annals of Numerical Mathematics, 4, 511–518.
  • Ren, M. Y., & Zeng, X. M. (2013). On statistical approximation properties of modified q-Bernstein-Schurer operators. Bulletin of the Korean Mathematical Society, 50, 1145–1156.
  • Schurer, F. (1962). Linear positive operators in approximation theory. Delft Report: Math. Inst. Techn. Univ.