792
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function

& | (Reviewing Editor)
Article: 1269589 | Received 22 Sep 2016, Accepted 03 Dec 2016, Published online: 29 Dec 2016

Abstract

In this paper, we are interested to prove some Hadamard and Fejér–Hadamard-type integral inequalities for m-convex functions via generalized fractional integral operator containing the generalized Mittag-Leffler function. In connection with we obtain some known results.

AMS Subject Classifications:

Public Interest Statement

Inequalities are very useful almost in all areas of Mathematics. Fractional integral inequalities are useful in establishing the uniqueness of solutions of certain partial differential equations also provides upper and lower bounds for the solutions of fractional boundary value problems. In this paper, we have established fractional integral inequalities of Hadamard and Fejer–Hadamard type using m-convex functions. Also we have deduced some known results.

1. Introduction

Convex functions play an important role in the study of mathematical analysis. A close generalization of convex functions is m-convex function introduced by Toader (Citation1984).

Definition 1

A function f:[0,b]R, b>0 is said to be m-convex function if for all x,y[0,b] and t[0,1]f(tx+m(1-t)y)tf(x)+m(1-t)f(y)

holds for m[0,1].

For m=1 the above definition becomes the definition of convex functions. Also a convex function f:IR is equivalently defined by the Hadamard inequality.fa+b21b-aabf(x)dxf(a)+f(b)2

where a,bI with a<b.

If we take m=0, then we obtain the concept of starshaped functions on [0, b]. A function f:[0,b]R is said to be starshaped if f(tx)tf(x) for all t[0,1] and x[0,b].

The set of m-convex functions on [0, b] for which f(0)<0 is denoted by Km(b), then we haveK1(b)Km(b)K0(b)

whenever m(0,1) (Toader, Citation1984).

In the class K1(b) there are convex functions f:[0,b]R for which f(0)0 (see, Dragmoir, Citation2002). There are lot of results and inequalities related to m-convex functions since they are defined, for details see for example Dragmoir (Citation2002), Dragmoir and Toader (Citation1993), Farid, Marwan, and Rehman (Citation2015), Iscan (Citation2013) and references there in.

The Hadamard inequality is very important and many mathematicians produced its generalization and refinements (e.g. see Bakula, Ozdemir, & Pečarić, Citation2008; Bakula & Pečarić, Citation2004; Chen & Katugampola, Citation2017; Dahmani, Citation2010; Sarikaya & Kuraca, Citation2014).

Fractional calculus is an important and interesting field of mathematics. A number of authors is working to produce new results in this branch for example, N. Katugampola gives the new fractional derivative which generalizes the Riemann–Liouville fractional derivatives to a single form (Katugampola, Citation2014), R. Almeida obtained the Caputo–Katugampola fractional derivative which is generalization of Caputo and Caputo–Hadamard fractional derivatives (Almeida, Citation2016), Thaiprayoon studied the existence and uniqueness of solutions for a problem consisting of non-linear Langevin equation of Riemann–Liouville-type fractional derivatives with non-local Katugampola fractional integral conditions (Thaiproyoon, Ntouyas, & Teriboon, Citation2015).

As in this paper we have to prove the Hadamard and the Fejér-Hadamard-type integral inequalities for m-convex functions via generalized fractional integral operator containing Mittag-Leffler function (Salim & Faraj, Citation2012), we give the following definition:

Definition 2

Let α,β,k,l,γ be positive real numbers and ωR. Then the generalized fractional integral operator containing Mittag-Leffler function ϵα,β,l,ω,a+γ,δ,k and ϵα,β,l,ω,b-γ,δ,k for a real valued continuous function f is defined by:(1) ϵα,β,l,ω,a+γ,δ,kf(x)=ax(x-t)β-1Eα,β,lγ,δ,k(ω(x-t)α)f(t)dt,(1)

andϵα,β,l,ω,b-γ,δ,kf(x)=xb(t-x)β-1Eα,β,lγ,δ,k(ω(t-x)α)f(t)dt,

where the function Eα,β,lγ,δ,k is the generalized Mittag-Leffler function defined as(2) Eα,β,lγ,δ,k(t)=n=0(γ)kntnΓ(αn+β)(δ)ln,(2) (a)n is the Pochhammer symbol, it defined as (a)n= a(a+1)(a+2)(a+n-1), (a)0 = 1. If δ=l=1 in (1), then integral operator ϵα,β,l,ω,a+γ,δ,k reduces to an integral operator ϵα,β,1,ω,a+γ,1,k containing generalized Mittag-Leffler function Eα,β,1γ,1,k introduced by Srivastava and Tomovski (Citation2009). Along with δ=l=1 in addition if k=1 then (1) reduces to an integral operator defined by Prabhakar (Citation1971) containing Mittag-Leffler function Eα,βγ. For ω=0 in (1), integral operator ϵα,β,l,ω,a+γ,δ,k reduces to the Riemann–Liouville fractional integral operators (Salim & Faraj, Citation2012),Ia+βf(x)=1Γ(β)ax(x-t)β-1f(t)dt,x>a

andIb-βf(x)=1Γ(β)xb(t-x)β-1f(t)dt,x>b.

Salim and Faraj (Citation2012), Srivastava and Tomovski (Citation2009) properties of generalized integral operator and generalized Mittag-Leffler function have been studied in brief. Salim and Faraj (Citation2012) it is proved that Eα,β,lγ,δ,k(t) is absolutely convergent for all t where k<l+α.

Since|Eα,β,lγ,δ,k(t)|n=0(γ)kntnΓ(αn+β)(δ)ln,

we say that n=0|(γ)kntnΓ(αn+β)(δ)ln|=S, then|Eα,β,lγ,δ,k(t)|S.

We use this definition of S in sequel in our results.

In Farid (Citation2016) the Hadamard and the Fejér-Hadamard inequality for generalized fractional integral operator containing Mittag-Leffler function defined in (1) are proved. The Hadamard and the Fejér-Hadamard-type inequality for several fractional integral operators are also mentioned in this paper. Also in Farid, Rehman, and Zahra (Citation2016), Iscan (Citation2015), Noor, Noor, and Awan (Citation2015) authors proved the Hadamard and the Fejér-Hadamard-type inequalities for Riemann–Liouville fractional integral operator (Chen & Katugampola, Citation2017).

In Mubeen and Habibullah (Citation2012) the Riemann–Liouville k-fractional integral operator is defined, we have obtained some results for this operator.

Definition 3

Let fL1[a,b]. Then k-fractional integrals of order α,k>0 with a0 are defined as:(3) Ia+α,kf(x)=1kΓk(α)ax(x-t)αk-1f(t)dt,x>a(3)

and(4) Ib-α,kf(x)=1kΓk(α)xb(t-x)αk-1f(t)dt,x<b,(4)

where Γk(α) is the k-Gamma function defined as:Γk(α)=0tα-1e-tkkdt.

One can note thatΓk(α+k)=αΓk(α)

and Ia+0,1f(x)=Ib-0,1f(x)=f(x).

In this paper, we give the Hadamard and the Fejér-Hadamard-type inequalities for m-convex function via generalized fractional integral operator containing generalized Mittag-Leffler function. The results of Dragmoir and Agarwal (Citation1998), Farid (Citation2016), Iscan (Citation2015), Noor et al. (Citation2015), Sarikaya, Set, Yaldiz, and Basak (Citation2013) are special cases of our results. It is also remarked that many integral inequalities for different kinds of integral operators can be obtained.

2. Main results

First we prove the following lemmas.

Lemma 2.1

Let g:[a,b]R be an integrable and symmetric about a+mb2 and gL[a,b]. Then we have(5) ϵα,β,l,ω,a+γ,δ,kg(mb)=ϵα,β,l,ω,mb-γ,δ,kg(a)=ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)2.(5)

Proof

Since g is symmetric about a+mb2, we have g(a+mb-x)=g(x). By the definition of generalized fractional integral operator containing Mittag-Leffler function, we have(6) ϵα,β,l,ω,a+γ,δ,kg(mb)=amb(mb-x)β-1Eα,β,lγ,δ,k(ω(mb-x)α)g(x)dx,(6)

replace x by a+mb-x in Equation (2) we haveϵα,β,l,ω,a+γ,δ,kg(mb)=amb(x-a)β-1Eα,β,lγ,δ,k(ω(x-a)α)g(x)dx.

This implies(7) ϵα,β,l,ω,a+γ,δ,kg(mb)=ϵα,β,l,ω,mb-γ,δ,kg(a).(7)

By adding Equations (6) and (7) we get (5).

Lemma 2.2

Let f:[a.b]R be a differentiable mapping on (ab) and fL[a,b]. If g:[a.b]R is integrable and symmetric about a+mb2, then the following equality for generalized fractional integral operator containing Mittag-Leffler function holds(8) f(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)=ambat(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds-tmb(s-a)β-1Eα,β,lγ,δ,k(ω(s-a)α)g(s)dsf(t)dt.(8)

Proof

Integrating by parts we haveambat(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)dsf(t)dt=f(mb)amb(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds-amb(mb-t)β-1Eα,β,lγ,δ,k(ω(mb-t)α)fg(t)dt=f(mb)ϵα,β,l,ω,a+γ,δ,kg(mb)-ϵα,β,l,ω,a+γ,δ,kfg(mb).

Using Lemma 2.1, we have(9) ambat(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)dsf(t)dt=f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb).(9)

In the same way we have(10) amb-tmb(s-a)β-1Eα,β,lγ,δ,k(ω(s-a)α)g(s)dsf(t)dt=f(a)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,b-γ,δ,kg(a)-ϵα,β,l,ω,mb-γ,δ,kfg(a).(10)

Adding (9) and (10) we get (8).

Using Lemma 2.2 we prove the following theorem:

Theorem 2.3

Let f:[a,b]R be a differentiable mapping in the interior of [ab] with fL[a,b], a<b. If |f| is m-convex function on [ab] and g:[a,b]R is continuous and symmetric about a+mb2, then for k<l+α the following inequality holdsf(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)gS(mb-a)β+1β(β+1)1-12β[|f(a)+mf(b)|],

where g=supt[a,b]|g(t)|.

Proof

Using Lemma 2.2 we have(11) f(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,b-γ,δ,kfg(a)ambat(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds-tmb(s-a)β-1Eα,β,lγ,δ,k(ω(s-a)α)g(s)ds|f(t)|dt.(11)

Using m-convexity of |f| we have(12) |f(t)|mb-tmb-a|f(a)|+mt-amb-a|f(b)|(12)

where t[a,b].

Using symmetry of g one can havetmb(s-a)β-1Eα,β,lγ,δ,k(ω(s-a)α)g(s)ds=aa+mb-t(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(a+mb-s)ds=aa+mb-t(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds.

This gives(13) at(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds-tmb(s-a)β-1Eα,β,lγ,δ,k(ω(s-a)α)g(s)ds=ta+mb-t(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)dsta+mb-t|(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)|ds,ta,a+mb2a+mb-tt|(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)|ds,ta+mb2,b.(13)

By (11), (12), (13) and absolute convergence of Mittag-Leffler function, we have(14) f(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)aa+mb2aa+mb-t|(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)|ds×mb-tmb-a|f(a)|+mt-amb-a|f(b)|dt+a+mb2mba+mb-tt|(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)|ds×mb-tmb-a|f(a)|+mt-amb-a|f(b)|dt.gSβ(mb-a)aa+mb2((mb-t)β-(t-a)β)(mb-t)|f(a)|dt+aa+mb2((mb-t)β-(t-a)β)m(t-a)|f(b)|dt+a+mb2mb((t-a)β-(mb-t)β)(mb-t)|f(a)|dt+a+mb2mb((t-a)β-(mb-t)β)m(t-a)|f(b)|dt.(14)

After simple calculation one can haveaa+mb2(mb-t)β-(t-a)β(mb-t)dt=a+mb2mb(t-a)β-(mb-t)β(t-a)dt=(mb-a)β+2β+1β+1β+2-12β+1,

andaa+mb2(mb-t)β-(t-a)β(t-a)dt=a+mb2mb(t-a)β-(mb-t)β(mb-t)dt=(mb-a)β+2β+11β+2-12β+1.

Using the above calculations in (14) we havef(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,b-γ,δ,kfg(a)gS(mb-a)β+1β(β+1)β+1β+2-12β+1+1β+2-12β+1[|f(a)|+m|f(b)|]=gSβ(β+1)(mb-a)β+11-12β[|f(a)|+m|f(b)|].

This completes the proof.

In the following corollary, we have the Fejér-Hadamard-type inequality for the k-fractional Riemann–Liouville integral operator (Sarikaya & Kuraca, Citation2014).

Corollary 2.4

In Theorem 2.3 if we put ω=0, β=αk and m=1 then we have the following inequalityf(a)+f(b)2Ia+α,kg(b)+Ib-α,kg(a)-Ia+α,kfg(b)+Ib-α,kfg(a)gΓk(α+k)(b-a)αk+1αk+11-12αk[|f(a)|+|f(b)|],α,k>0.

In the following corollary we obtain the Fejér-Hadamard-type inequality for Riemann–Liouville fractional integral operator.

Corollary 2.5

In Theorem 2.3 for ω=0, β=α and k=m=1 we have the following inequality for Riemann–Liouville fractional integral operatorf(a)+f(b)2Ia+αg(b)+Ib-αg(a)-Ia+αfg(b)+Ib-αfg(a)gΓ(α+1)(b-a)α+1(α+1)1-12α[|f(a)|+|f(b)|],α>0.

Remark 2.6

 

(i)

From Theorem 2.3 we get (Abbas, Farid, & Rehman, Citationin press, Theorem 2.3) for m=1.

(ii)

In Theorem 2.3 for ω=0 and g(s)=1 along with β=m=1 we get Dragmoir and Agarwal (Citation1998, Theorem 2.2).

(iii)

In Theorem 2.3 if we put ω=0 and g(s)=1 with m=1 then we get Sarikaya et al. (Citation2013, Theorem 3).

Theorem 2.7

Let f:[a,b]R be a differentiable mapping in the interior of [ab] with f is integrable over [ab], a<b. If |f|q, q>1 is m-convex function on [ab] and g:[a,b]R is continuous and symmetric to a+mb2, then for k<l+α the following inequality holds(15) f(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)2gS(mb-a)β+1β(β+1)(mb-a)1q1-12β|f(a)|q+m|f(b)|q21q(15)

where g=supt[a,b]|g(t)|, 1p+1q=1 and β>0.

Proof

Using Lemma 2.2, Hölder inequality, (13) and m-convexity of |f|q respectively we have(16) f(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)ambta+mb-t(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)dsdt1-1q×ambta+mb-t(mb-s)β-1Eα,β,lγ,δ,k(ω(mb-s)α)g(s)ds|f(t)|q1q.(16)

Since |f|q is m-convex on [ab], we have(17) |f(t)|qmb-tmb-a|f(a)|q+mt-amb-a|f(b)|q.(17)

Using g=supt[a,b]|g(t)|, and absolute convergence of Mittag-Leffler function, inequality (16) becomesf(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,b-γ,δ,kfg(a)g1-1qS1-1qaa+mb2ta+mb-t(mb-s)β-1dsdt+a+mb2mba+mb-tt(mb-s)β-1dsdt1-1q×g1qS1qaa+mb2ta+mb-t(mb-s)β-1ds|f(t)|qdt+a+mb2mba+mb-tt(mb-s)β-1ds|f(t)|qdt1q.

After simplification, we getf(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)gS(mb-a)β+1β+11-12β+(mb-a)β+1β+11-12β1-1q×aa+mb2(mb-t)β-(t-a)β|f(t)|qdt+a+mb2b(mb-t)β-(t-a)β.|f(t)|qdt1q.

Using (17) in above inequality, we havef(a)+f(mb)2ϵα,β,l,ω,a+γ,δ,kg(mb)+ϵα,β,l,ω,mb-γ,δ,kg(a)-ϵα,β,l,ω,a+γ,δ,kfg(mb)+ϵα,β,l,ω,mb-γ,δ,kfg(a)gS2(mb-a)β+1β+11-12β1-1q×aa+mb2(mb-t)β-(t-a)βmb-tmb-a|f(a)|q+mt-amb-a|f(b)|qdt+a+mb2b(mb-t)β-(t-a)βmb-tmb-a|f(a)|q+mt-amb-a|f(b)|qdt1q.

After integrating and simplifying above inequality we get (15).

In the following we get an inequality for the k-fractional Riemann–Liouville integral operator.

Corollary 2.8

In Theorem 2.7 if ω=0, β=αk and m=1 then we have the following inequality for Riemann–Liouville k-fractional integral operatorf(a)+f(b)2[Ia+α,kg(b)+Ib-α,kg(a)]-[Ia+α,kfg(b)+Ib-α,kfg(a)]2g(b-a)αk+1Γk(α+1)αk+1(b-a)1q1-12αk|f(a)|q+|f(b)|q21qα,k>0.

Corollary 2.9

In Theorem 2.7 if ω=0, β=α and k=m=1 then we have the following inequality for Riemann–Liouville fractional integral operatorf(a)+f(b)2[Ia+αg(b)+Ib-αg(a)]-[Ia+αfg(b)+Ib-αfg(a)]2g(b-a)α+1Γ(α+1)(α+1)(b-a)1q1-12α|f(a)|q+|f(b)|q21qα>0.

Remark 2.10

For m=1 in Theorem 2.3 we obtained (Abbas et al., Citationin press, Theorem 2.6).

In the following theorem we give the Fejér-Hadamard-type inequality for m-convex function via generalized fractional integral operator containing Mittag-Leffler functions.

Theorem 2.11

Let f:[a,b]R be m-convex function with b>a. If f(a+mb-x)=f(x) and g:[a,b]R is integrable, non-negative and symmetric about a+mb2, then the following inequalities holds2fa+mb2ϵα,β,l,ω,b-γ,δ,kgam(1+m)ϵα,β,l,ω,b-γ,δ,kfgam(f(a)-m2fam2)b-amϵα,β,l,mαω,b-γ,δ,kgam+mf(b)+mfam2ϵα,β,l,ω,b-γ,δ,kgam

where ω=ω(mb-a)α.

Proof

Since f is m-convex function, for t[a,b] we havefa+mb2=fta+m(1-t)b+m(tb+(1-t)am)2f(ta+m(1-t)b)+mf(tb+(1-t)am)2.

Multiplying both sides of above inequality by 2tβ-1gtb+(1-t)amEα,β,lγ,δ,k(ωtα) and integrating over [0, 1] we have(18) 2fa+mb201tβ-1g(tb+(1-t)am)Eα,β,lγ,δ,k(ωtα)dt01tβ-1gtb+(1-t)amEα,β,lγ,δ,k(ωtα)f(ta+m(1-t)b)dt+m01tβ-1gtb+(1-t)amEα,β,lγ,δ,k(ωtα)ftb+(1-t)amdt.(18)

Setting tb+(1-t)am and using f(a+mb-mx)=f(x) after simplification (18) becomes(19) 2fa+mb2ϵα,β,l,ω,b-γ,δ,kgam(1+m)ϵα,β,l,ω,b-γ,δ,kfgam.(19)

For second inequality m-convexity of f gives(20) f(ta+m(1-t)b)+mftb+1m(1-t)amf(b)+mfam2+f(a)-m2fam2t.(20)

Multiplying both sides of inequality (20) with tβ-1gtb+(1-t)amEα,β,lγ,δ,k(ωtα) and integrating on [0, 1], then setting x=tb+(1-t)am, using f(a+mb-mx)=f(x) after calculation we have(21) (1+m)ϵα,β,l,ω,b-γ,δ,kfgamf(a)-m2fam2b-amϵα,β,l,ω,b-γ,δ,kgam+mf(b)+mfam2ϵα,β,l,ω,b-γ,δ,kgam.(21)

Combining (19) and (21) we get the desired result.

Corollary 2.12

In Theorem 2.11 if we take m=1, then we get the following Fejér-Hadamard-type inequality.fa+b2ϵα,β,l,ω,b-γ,δ,kg(a)ϵα,β,l,ω,b-γ,δ,kfg(a)+f(a)+f(b)2ϵα,β,l,ω,b-γ,δ,kg(a).

Additional information

Funding

The authors received no direct funding for this research.

Notes on contributors

G. Abbas

G. Abbas is working as a lecturer in Government College Bhalwal, Sargodha. Also, he is working on his PhD dissertation in the University of Sargodha, Sargodha Pakistan.

G. Farid

G. Farid is working as an assistant professor in the Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan. He is interested to work in the areas of Mathematical analysis, Functional analysis, Fractional Calculus.

References

  • Abbas, G., Farid, G., & Rehman, A. Ur. (in press). Hadamard and Fejér-Hadamard type inequalities via generalized fractional integral operator containing generalized Mittag--Leffler function.
  • Almeida, R. (2016). Variational problems involving a caputo-type fractional derivative. Journal of Optics A: Pure and Applied Optics.. doi:10.1007/S10957-016-0883-4
  • Bakula, M. K., Ozdemir, M. E., & Pečarić, J. (2008). Hadamard type inequalities for m-convex and (α, m)-convex functions. Journal of Inequalities in Pure and Applied Mathematics, 9, 12 pp.
  • Bakula, M. K., & Pečarić, J. (2004). Note on some Hadamard-type inequalties. Journal of Inequalities in Pure and Applied Mathematics, 5, 9 pp.
  • Chen, H., & Katugampola, U. N. (2017). Hermite--Hadamard-Fejér type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications, 446, 1274–1291.
  • Dahmani, Z. (2010). On Minkowski and Hermit Hadamard integral inequalities via fractional integration. Annals of Functional Analysis, 1, 51–58.
  • Dragmoir, S. S. (2002). On some new inequalities of Hermit-Hadamard type for m-convex functions. Turkish Journal of Mathematics, 33, 45–55.
  • Dragmoir, S. S., & Agarwal, R. P. (1998). Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Applied Mathematics Letters, 11, 91–95.
  • Dragmoir, S. S., & Toader, G. H. (1993). Some inequalities for m-convex functions. Studia Universitatis Babes-Bolyai Mathematica, 38, 21–28.
  • Farid, G. (2016). Hadamard and Fejér-Hadamard Inequalities for generalized fractional integrals involving special functions. Konuralp Journal of Mathematics, 4, 108–113.
  • Farid, G., Marwan, M., & Rehman, A. Ur. (2015). New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions. Journal of Inequalities and Applications, Article ID 283, 11 pp.
  • Farid, G., Rehman, A. Ur., & Zahra, M. (2016). On Hadamard inequalities for relative convex functions via fractional integrals. Nonlinear Analysis Forum, 21, 77–86.
  • Iscan, I. (2013). New estimates on generalization of some integral inequalities for (α, m)-convex functions. Contemporary Analysis and Applied Mathematics, 1, 253–264.
  • Iscan, I. (2015). Hermit Hadamard Fejér type inequalities for convex functions via fractional integrals. Studia Universitatis Babes-Bolyai Mathematica, 60, 355–366.
  • Katugampola, U. N. (2014). A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications, 6(4), 1–15.
  • Mubeen, S., & Habibullah, G. M. (2012). k-Fractional integrals and applications. International Journal of Contemporary Mathematical Sciences, 7, 89–94.
  • Noor, M. A., Noor, K. I., & Awan, M. U. (2015). Generalized convexity and integral inequalities. Applied Mathematics & Information Sciences, 9, 233–243.
  • Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag--Leffler function in the kernel. Yokohama Mathematical Journal, 19, 7–15.
  • Salim, L. T. O., & Faraj, A. W. (2012). A generalization of Mittaf--Leffler function and integral operator associated with integral calculus. Journal of Fractional Calculus and Applications, 3(5), 1–3.
  • Sarikaya, M. Z., & Kuraca, A. (2014). On the k-Riemann--Liouville fractional integrals and applications. International Journal of Mathematics and Statistics, 1, 033–043.
  • Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N. (2013). Hermit- Hadamard inequalities for fractional integrals and related fractional inequalities. Journal of Mathematical and Computer Modelling, 57, 2403–2407.
  • Srivastava, H. M., & Tomovski, Z. (2009). Fractional calculus with an integral operator containing generalized Mittag--Leffler function in the kernal. Applied Mathematics and Computation. doi:10.1016/j.amc.2009.01.055
  • Thaiproyoon, C., Ntouyas, S. K., & Teriboon, J. (2015). On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation. Advance in Difference Equations, 2015, 374.
  • Toader, G. H. (1984). Some generaliztion of convexity. Proceedings of the Colloquium on Approximation and Optimization Cluj Napoca(Romania) (pp. 329–338). Cluj: University of Cluj-Napoca.