83
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Modified Symbolic Implicit Monte Carlo Method for Time-Dependent Thermal Radiation Transport

 

Abstract

Symbolic Implicit Monte Carlo (SIMC) is fully implicit in the value of matter temperature used to calculate the thermal emission. However, it means that the temporal precision of this method is limited, despite this method being more robust than Fleck and Cummings’ IMC method. In this article, we develop a new Monte Carlo method which is accurate for the thermal emission in one time step. Instead of solving a system of nonlinear equations as in SIMC, we rewrite the material energy balance equation as a system of ordinary differential equations by a waveform relaxation method. We find that the initial value problem associated with these ordinary differential equations has an analytical solution, meaning that we can convert the problem into solving a function of the material temperature at the end of a time step. We prove that the function is monotonic during a time step, so that a bisection method can be used to solve the equation. This calculation process avoids having to solve the matrix equations directly and instead they are converged by performing an outer iteration. Numerical experiments are performed to validate the accuracy and efficiency of the current approach.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.