94
Views
0
CrossRef citations to date
0
Altmetric
Article

On the Effect of Angular and Spatial Discretization on Perturbation Calculations

, , &
 

Abstract

In this article, different angular flux discretization options, namely discrete ordinates representation and spherical harmonics expansion are compared from the viewpoint of the accuracy of perturbation calculations. The PARTISN discrete ordinates neutron transport solver was coupled with the SEnTRi code, developed at BME, in order to perform perturbation theory calculations in different types of geometry descriptions and angular representations. With the help of the implemented code, the effect of the angular and spatial discretization on the results of perturbation theory calculations was investigated. Exact matches were observed in Cartesian geometries with the direct perturbation method when the discrete ordinates angular representation was used, and small discrepancies were found when the spherical harmonics expansion was applied. In cylindrical geometries, slight differences were observed with both angular expansions, which originate from the nature of the adjoint transport operator in curvilinear coordinate systems. The differences can be reduced to a negligible level with increased expansion order in both cases. Small discrepancies can have a significant effect in sensitivity, uncertainty and transient calculations, which that for high accuracy calculation the discrete ordinates representation of the angular dependent flux should be used or sufficiently high expansion order with the spherical harmonics must be applied.

Acknowledgments

The research reported in this paper and carried out at the Budapest University of Technology and Economics was supported by the “TKP2020, National Challenges Program” of the National Research Development and Innovation Office (BME NC TKP2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.